A Model for Predicting Music Popularity on Streaming Platforms

C. V. Araujo, Marco Cristo, Rafael Giusti
{"title":"A Model for Predicting Music Popularity on Streaming Platforms","authors":"C. V. Araujo, Marco Cristo, Rafael Giusti","doi":"10.22456/2175-2745.107021","DOIUrl":null,"url":null,"abstract":"The global music market moves billions of dollars every year, most of which comes from streamingplatforms. In this paper, we present a model for predicting whether or not a song will appear in Spotify’s Top 50, a ranking of the 50 most popular songs in Spotify, which is one of today’s biggest streaming services. To make this prediction, we trained different classifiers with information from audio features from songs that appeared in this ranking between November 2018 and January 2019. When tested with data from June and July 2019, an SVM classifier with RBF kernel obtained accuracy, precision, and AUC above 80%.","PeriodicalId":82472,"journal":{"name":"Research initiative, treatment action : RITA","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research initiative, treatment action : RITA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22456/2175-2745.107021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The global music market moves billions of dollars every year, most of which comes from streamingplatforms. In this paper, we present a model for predicting whether or not a song will appear in Spotify’s Top 50, a ranking of the 50 most popular songs in Spotify, which is one of today’s biggest streaming services. To make this prediction, we trained different classifiers with information from audio features from songs that appeared in this ranking between November 2018 and January 2019. When tested with data from June and July 2019, an SVM classifier with RBF kernel obtained accuracy, precision, and AUC above 80%.
流媒体平台音乐流行度预测模型
全球音乐市场每年移动数十亿美元,其中大部分来自流媒体平台。在本文中,我们提出了一个模型,用于预测一首歌曲是否会出现在Spotify的前50名中,这是Spotify中50首最受欢迎的歌曲的排名,Spotify是当今最大的流媒体服务之一。为了进行预测,我们使用2018年11月至2019年1月期间出现在该排名中的歌曲的音频特征信息训练了不同的分类器。使用2019年6月和7月的数据进行测试,RBF核SVM分类器的准确率、精密度和AUC均在80%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信