On the fifth Whitney cone of a complex analytic curve

IF 0.4 Q4 MATHEMATICS
A. G. Flores, O. N. Silva, J. Snoussi
{"title":"On the fifth Whitney cone of a complex analytic curve","authors":"A. G. Flores, O. N. Silva, J. Snoussi","doi":"10.5427/jsing.2022.24c","DOIUrl":null,"url":null,"abstract":"From a procedure to calculate the $C_5$-cone of a reduced complex analytic curve $X \\subset \\mathbb{C}^n$ at a singular point $0 \\in X$, we extract a collection of integers that we call {\\it auxiliary multiplicities} and we prove they characterize the Lipschitz type of complex curve singularities. We then use them to improve the known bounds for the number of irreducible components of the $C_5$-cone. We finish by giving an example showing that in a Lipschitz equisingular family of curves the number of planes in the $C_5$-cone may not be constant.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2022.24c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

From a procedure to calculate the $C_5$-cone of a reduced complex analytic curve $X \subset \mathbb{C}^n$ at a singular point $0 \in X$, we extract a collection of integers that we call {\it auxiliary multiplicities} and we prove they characterize the Lipschitz type of complex curve singularities. We then use them to improve the known bounds for the number of irreducible components of the $C_5$-cone. We finish by giving an example showing that in a Lipschitz equisingular family of curves the number of planes in the $C_5$-cone may not be constant.
复解析曲线的第五惠特尼锥
从计算简化复解析曲线$X \子集\mathbb{C}^n$在X$奇点$0 \处的$C_5$-锥的过程中,我们提取了一个整数集合,我们称之为{\it辅助多重数},并证明了它们表征了复曲线奇点的Lipschitz型。然后用它们改进了C_5 -锥不可约分量的已知界。最后给出了一个例子,证明了在Lipschitz等奇异曲线族中,C_5 -锥中的平面数可能不是恒定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信