{"title":"The multiplicity and the number of generators of an integrally closed ideal","authors":"Hailong Dao, I. Smirnov","doi":"10.5427/JSING.2019.19E","DOIUrl":null,"url":null,"abstract":"Let $(R, \\mathfrak m)$ be a Noetherian local ring and $I$ a $\\mathfrak m$-primary ideal. In this paper, we study an inequality involving the number of generators, the Loewy length and the multiplicity of $I$. There is strong evidence that the inequality holds for all integrally closed ideals of finite colength if and only if $R$ has sufficiently nice singularities. We verify the inequality for regular local rings in all dimensions, for rational singularity in dimension $2$, and cDV singularities in dimension $3$. In addition, we can classify when the inequality always hold for a Cohen-Macaulay $R$ of dimension at most two. We also discuss relations to various topics: classical results on rings with minimal multiplicity and rational singularities, the recent work on $p_g$ ideals by Okuma-Watanabe-Yoshida, multiplicity of the fiber cone, and the $h$-vector of the associated graded ring.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2017-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/JSING.2019.19E","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Let $(R, \mathfrak m)$ be a Noetherian local ring and $I$ a $\mathfrak m$-primary ideal. In this paper, we study an inequality involving the number of generators, the Loewy length and the multiplicity of $I$. There is strong evidence that the inequality holds for all integrally closed ideals of finite colength if and only if $R$ has sufficiently nice singularities. We verify the inequality for regular local rings in all dimensions, for rational singularity in dimension $2$, and cDV singularities in dimension $3$. In addition, we can classify when the inequality always hold for a Cohen-Macaulay $R$ of dimension at most two. We also discuss relations to various topics: classical results on rings with minimal multiplicity and rational singularities, the recent work on $p_g$ ideals by Okuma-Watanabe-Yoshida, multiplicity of the fiber cone, and the $h$-vector of the associated graded ring.