A distribution-independent risk estimator for image denoising

Babu Kishore Subramanian, Ashutosh Gupta, C. Seelamantula
{"title":"A distribution-independent risk estimator for image denoising","authors":"Babu Kishore Subramanian, Ashutosh Gupta, C. Seelamantula","doi":"10.1145/3009977.3010025","DOIUrl":null,"url":null,"abstract":"We address the problem of image denoising for an additive white noise model without placing any restrictions on the statistical distribution of noise. We assume knowledge of only the first- and second-order noise statistics. In the recent mean-square error (MSE) minimization approaches for image denoising, one considers a particular noise distribution and derives an expression for the unbiased risk estimate of the MSE. For additive white Gaussian noise, an unbiased estimate of the MSE is Stein's unbiased risk estimate (SURE), which relies on Stein's lemma. We derive an unbiased risk estimate without using Stein's lemma or its counterparts for additive white noise model irrespective of the noise distribution. We refer to the MSE estimate as the generic risk estimate (GenRE). We demonstrate the effectiveness of GenRE using shrinkage in the undecimated Haar wavelet transform domain as the denoising function. The estimated peak-signal-to-noise-ratio (PSNR) using GenRE is typically within 1% of the PSNR obtained when optimizing with the oracle MSE. The performance of the proposed method is on par with SURE for Gaussian noise distribution, and better than SURE-based methods for other noise distributions such as uniform and Laplacian distribution in terms of both PSNR and structural similarity (SSIM).","PeriodicalId":93806,"journal":{"name":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","volume":"220 1","pages":"52:1-52:8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009977.3010025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We address the problem of image denoising for an additive white noise model without placing any restrictions on the statistical distribution of noise. We assume knowledge of only the first- and second-order noise statistics. In the recent mean-square error (MSE) minimization approaches for image denoising, one considers a particular noise distribution and derives an expression for the unbiased risk estimate of the MSE. For additive white Gaussian noise, an unbiased estimate of the MSE is Stein's unbiased risk estimate (SURE), which relies on Stein's lemma. We derive an unbiased risk estimate without using Stein's lemma or its counterparts for additive white noise model irrespective of the noise distribution. We refer to the MSE estimate as the generic risk estimate (GenRE). We demonstrate the effectiveness of GenRE using shrinkage in the undecimated Haar wavelet transform domain as the denoising function. The estimated peak-signal-to-noise-ratio (PSNR) using GenRE is typically within 1% of the PSNR obtained when optimizing with the oracle MSE. The performance of the proposed method is on par with SURE for Gaussian noise distribution, and better than SURE-based methods for other noise distributions such as uniform and Laplacian distribution in terms of both PSNR and structural similarity (SSIM).
一种与分布无关的图像去噪风险估计方法
我们解决了一个加性白噪声模型的图像去噪问题,没有对噪声的统计分布施加任何限制。我们假设只知道一阶和二阶噪声统计量。在最近用于图像去噪的均方误差(MSE)最小化方法中,人们考虑特定的噪声分布并推导出MSE无偏风险估计的表达式。对于加性高斯白噪声,MSE的无偏估计是依赖于Stein引理的Stein无偏风险估计(SURE)。我们得到了一个无偏的风险估计,而不使用Stein引理或其对应的加性白噪声模型,而不考虑噪声分布。我们将MSE估计称为一般风险估计(类型)。我们使用未消差Haar小波变换域的收缩作为去噪函数,证明了GenRE的有效性。使用GenRE估计的峰值信噪比(PSNR)通常在使用oracle MSE优化时获得的PSNR的1%以内。对于高斯噪声分布,该方法的性能与SURE相当,对于均匀分布和拉普拉斯分布等其他噪声分布,该方法的PSNR和结构相似度(SSIM)均优于基于SURE的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信