Mass flux analysis of 137Cs plumes emitted from the Fukushima Daiichi nuclear power plant

T. Sekiyama, T. Iwasaki
{"title":"Mass flux analysis of 137Cs plumes emitted from the Fukushima Daiichi nuclear power plant","authors":"T. Sekiyama, T. Iwasaki","doi":"10.1080/16000889.2018.1507390","DOIUrl":null,"url":null,"abstract":"Abstract The flow vectors of radioactive cesium-137 (137Cs) plume emitted from the Fukushima Daiichi nuclear power plant in March 2011 were quantitatively depicted by a mass flux analysis in this study. 137Cs plumes were calculated by an Eulerian dispersion model with a 3-km horizontal resolution. The vertically column-integrated mass flux was consistent with the flow approximation based on ground surface 137Cs observations, even though there were some discrepancies that were caused by differences in the wind direction between the ground surface and the dominant plume layer. These discrepancies were explained by combining the use of the ground surface horizontal mass flux with the column-integrated mass flux. The mass flux analysis clearly provided an illustration of 137Cs dominant stream locations, directions, and depositions by reducing high-dimensional model outputs into a lower-dimensional plot. Mass flux (i.e. the product of the mass density and wind velocity) has often been used in dynamic meteorology but has not been used as frequently in atmospheric chemistry or pollutant dispersion studies. However, the concept of mass flux is a robust alternative for conventional validation approaches that only utilize a time series of pollutant concentrations. Mass flux analyses can be used further in atmospheric chemistry as a quantitative visualization tool to track the emission, advection, dispersion, and deposition of atmospheric constituents.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"1 1","pages":"1 - 11"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus B: Chemical and Physical Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16000889.2018.1507390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract The flow vectors of radioactive cesium-137 (137Cs) plume emitted from the Fukushima Daiichi nuclear power plant in March 2011 were quantitatively depicted by a mass flux analysis in this study. 137Cs plumes were calculated by an Eulerian dispersion model with a 3-km horizontal resolution. The vertically column-integrated mass flux was consistent with the flow approximation based on ground surface 137Cs observations, even though there were some discrepancies that were caused by differences in the wind direction between the ground surface and the dominant plume layer. These discrepancies were explained by combining the use of the ground surface horizontal mass flux with the column-integrated mass flux. The mass flux analysis clearly provided an illustration of 137Cs dominant stream locations, directions, and depositions by reducing high-dimensional model outputs into a lower-dimensional plot. Mass flux (i.e. the product of the mass density and wind velocity) has often been used in dynamic meteorology but has not been used as frequently in atmospheric chemistry or pollutant dispersion studies. However, the concept of mass flux is a robust alternative for conventional validation approaches that only utilize a time series of pollutant concentrations. Mass flux analyses can be used further in atmospheric chemistry as a quantitative visualization tool to track the emission, advection, dispersion, and deposition of atmospheric constituents.
福岛第一核电站排放的137Cs羽流的质量通量分析
摘要本研究采用质量通量分析方法定量描述了2011年3月福岛第一核电站放射性铯-137 (137Cs)羽流的流动矢量。137Cs羽流采用欧拉色散模型计算,水平分辨率为3 km。垂直柱积分质量通量与基于地表137Cs观测的流量近似一致,但由于地表与优势羽流层风向的差异,存在一定的差异。将地表水平质量通量与柱积分质量通量结合使用来解释这些差异。质量通量分析通过将高维模型输出简化为低维图,清楚地说明了137Cs的优势流位置、方向和沉积。质量通量(即质量密度和风速的乘积)经常用于动态气象学,但在大气化学或污染物扩散研究中使用的频率并不高。然而,质量通量的概念对于仅利用污染物浓度时间序列的传统验证方法来说是一个可靠的替代方案。质量通量分析可以进一步应用于大气化学,作为一种定量可视化工具来跟踪大气成分的发射、平流、弥散和沉积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信