Prediction of Drug Half-life Values of Antihistamines Based on the CODES/Neural Network Model

C. Quiñones, Joaquín Caceres, M. Stud, Ana Martínez
{"title":"Prediction of Drug Half-life Values of Antihistamines Based on the CODES/Neural Network Model","authors":"C. Quiñones, Joaquín Caceres, M. Stud, Ana Martínez","doi":"10.1002/1521-3838(200012)19:5<448::AID-QSAR448>3.0.CO;2-3","DOIUrl":null,"url":null,"abstract":"The CODES/neural network model has been successfully applied to the prediction of pharmacokinetic properties of therapeutical compounds. The output of CODES, a graphical module based on the Gestalt isomorphism, is proved to be a valuable tool in the design of a neural network model able to predict the half-life values of antihistamines. Additionally, the generated models are able to classify these drugs in their corresponding therapeutic category (H1 or H2 receptor antagonists).","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/1521-3838(200012)19:5<448::AID-QSAR448>3.0.CO;2-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The CODES/neural network model has been successfully applied to the prediction of pharmacokinetic properties of therapeutical compounds. The output of CODES, a graphical module based on the Gestalt isomorphism, is proved to be a valuable tool in the design of a neural network model able to predict the half-life values of antihistamines. Additionally, the generated models are able to classify these drugs in their corresponding therapeutic category (H1 or H2 receptor antagonists).
基于CODES/神经网络模型的抗组胺药半衰期预测
CODES/神经网络模型已成功应用于治疗性化合物的药代动力学特性预测。基于格式塔同构的图形模块CODES的输出被证明是设计抗组胺药半衰期预测神经网络模型的一个有价值的工具。此外,生成的模型能够将这些药物分类到相应的治疗类别(H1或H2受体拮抗剂)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信