A data-adaptive method for estimating density level sets under shape conditions

A. Rodríguez-Casal, P. Saavedra-Nieves
{"title":"A data-adaptive method for estimating density level sets under shape conditions","authors":"A. Rodríguez-Casal, P. Saavedra-Nieves","doi":"10.1214/21-aos2168","DOIUrl":null,"url":null,"abstract":"Given a random sample of points from some unknown density, we propose a method for estimating density level sets, for a given threshold t, under the r ́convexity assumption. This shape condition generalizes the convexity property and allows to consider level sets with more than one connected component. The main problem in practice is that r is an unknown geometric characteristic of the set related to its curvature, which may depend on t. A stochastic algorithm is proposed for selecting its value from data. The resulting reconstruction of the level set is able to achieve minimax rates for Hausdorff metric and distance in measure uniformly on the level t.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Given a random sample of points from some unknown density, we propose a method for estimating density level sets, for a given threshold t, under the r ́convexity assumption. This shape condition generalizes the convexity property and allows to consider level sets with more than one connected component. The main problem in practice is that r is an unknown geometric characteristic of the set related to its curvature, which may depend on t. A stochastic algorithm is proposed for selecting its value from data. The resulting reconstruction of the level set is able to achieve minimax rates for Hausdorff metric and distance in measure uniformly on the level t.
形状条件下密度水平集估计的数据自适应方法
给定来自未知密度点的随机样本,我们提出了一种方法来估计密度水平集,对于给定阈值t,在r凸性假设下。这个形状条件推广了凸性,并允许考虑具有多个连通分量的水平集。实践中的主要问题是r是与曲率相关的集合的未知几何特征,它可能依赖于t。提出了一种从数据中选择其值的随机算法。所得的水平集重建能够在水平t上均匀地实现豪斯多夫度量和测量距离的极小极大率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信