Nick Sephton, P. Cowling, Sam Devlin, Victoria J. Hodge, Nicholas H. Slaven
{"title":"Using association rule mining to predict opponent deck content in android: Netrunner","authors":"Nick Sephton, P. Cowling, Sam Devlin, Victoria J. Hodge, Nicholas H. Slaven","doi":"10.1109/CIG.2016.7860399","DOIUrl":null,"url":null,"abstract":"As part of their design, card games often include information that is hidden from opponents and represents a strategic advantage if discovered. A player that can discover this information will be able to alter their strategy based on the nature of that information, and therefore become a more competent opponent. In this paper, we employ association rule-mining techniques for predicting item multisets, and show them to be effective in predicting the content of Netrunner decks. We then apply different modifications based on heuristic knowledge of the Netrunner game, and show the effectiveness of techniques which consider this knowledge during rule generation and prediction.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"54 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
As part of their design, card games often include information that is hidden from opponents and represents a strategic advantage if discovered. A player that can discover this information will be able to alter their strategy based on the nature of that information, and therefore become a more competent opponent. In this paper, we employ association rule-mining techniques for predicting item multisets, and show them to be effective in predicting the content of Netrunner decks. We then apply different modifications based on heuristic knowledge of the Netrunner game, and show the effectiveness of techniques which consider this knowledge during rule generation and prediction.