A new method for solving the elliptic curve discrete logarithm problem

IF 0.1 Q4 MATHEMATICS
Ansari Abdullah, A. Mahalanobis, V. Mallick
{"title":"A new method for solving the elliptic curve discrete logarithm problem","authors":"Ansari Abdullah, A. Mahalanobis, V. Mallick","doi":"10.46298/jgcc.2020.12.2.6649","DOIUrl":null,"url":null,"abstract":"The elliptic curve discrete logarithm problem is considered a secure\ncryptographic primitive. The purpose of this paper is to propose a paradigm\nshift in attacking the elliptic curve discrete logarithm problem. In this\npaper, we will argue that initial minors are a viable way to solve this\nproblem. This paper will present necessary algorithms for this attack. We have\nwritten a code to verify the conjecture of initial minors using Schur\ncomplements. We were able to solve the problem for groups of order up to\n$2^{50}$.\nComment: 13 pages; revised for publication","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"9 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2020.12.2.6649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

The elliptic curve discrete logarithm problem is considered a secure cryptographic primitive. The purpose of this paper is to propose a paradigm shift in attacking the elliptic curve discrete logarithm problem. In this paper, we will argue that initial minors are a viable way to solve this problem. This paper will present necessary algorithms for this attack. We have written a code to verify the conjecture of initial minors using Schur complements. We were able to solve the problem for groups of order up to $2^{50}$. Comment: 13 pages; revised for publication
求解椭圆曲线离散对数问题的一种新方法
椭圆曲线离散对数问题被认为是一个安全密码原语。本文的目的是提出一种解决椭圆曲线离散对数问题的范式转换。在本文中,我们将论证初始未成年人是解决这一问题的可行方法。本文将给出这种攻击的必要算法。我们编写了一个代码来验证使用schur补语的初始次元猜想。我们能够求解到$2^{50}$的组的问题。评论:13页;修订后出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信