MaVis: Machine Learning Aided Multi-Model Framework for Time Series Visual Analytics

Kaiyu Zhao, M. Ward, Elke A. Rundensteiner, H. N. Higgins
{"title":"MaVis: Machine Learning Aided Multi-Model Framework for Time Series Visual Analytics","authors":"Kaiyu Zhao, M. Ward, Elke A. Rundensteiner, H. N. Higgins","doi":"10.2352/ISSN.2470-1173.2016.1.VDA-493","DOIUrl":null,"url":null,"abstract":"The ultimate goal of any visual analytic task is to make sense of the data and gain insights. Unfortunately, the continuously growing scale of the data nowadays challenges the traditional data analytics in the ”big-data” era. Particularly, the human cognitive capabilities are constant whereas the data scale is not. Furthermore, most existing work focus on how to extract interesting information and present that to the user while not emphasizing on how to provide options to the analysts if the extracted information is not interesting. In this paper, we propose a visual analytic tool called MaVis that integrates multiple machine learning models with a plug-andplay style to describe the input data. It allows the analysts to choose the way they prefer to summarize the data. The MaVis framework provides multiple linked analytic spaces for interpretation at different levels. The low level data space handles data binning strategy while the high level model space handles model summarizations (i.e. clusters or trends). MaVis also supports model analytics that visualize the summarized patterns and compare and contrast them. This framework is shown to provide several novel methods of investigating co-movement patterns of timeseries dataset which is a common interest of medical sciences, finance, business and engineering alike. Lastly we demonstrate the usefulness of our framework via case study and user study using a stock price dataset.","PeriodicalId":89305,"journal":{"name":"Visualization and data analysis","volume":"13 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visualization and data analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ISSN.2470-1173.2016.1.VDA-493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The ultimate goal of any visual analytic task is to make sense of the data and gain insights. Unfortunately, the continuously growing scale of the data nowadays challenges the traditional data analytics in the ”big-data” era. Particularly, the human cognitive capabilities are constant whereas the data scale is not. Furthermore, most existing work focus on how to extract interesting information and present that to the user while not emphasizing on how to provide options to the analysts if the extracted information is not interesting. In this paper, we propose a visual analytic tool called MaVis that integrates multiple machine learning models with a plug-andplay style to describe the input data. It allows the analysts to choose the way they prefer to summarize the data. The MaVis framework provides multiple linked analytic spaces for interpretation at different levels. The low level data space handles data binning strategy while the high level model space handles model summarizations (i.e. clusters or trends). MaVis also supports model analytics that visualize the summarized patterns and compare and contrast them. This framework is shown to provide several novel methods of investigating co-movement patterns of timeseries dataset which is a common interest of medical sciences, finance, business and engineering alike. Lastly we demonstrate the usefulness of our framework via case study and user study using a stock price dataset.
MaVis:时间序列可视化分析的机器学习辅助多模型框架
任何可视化分析任务的最终目标都是理解数据并获得洞察力。不幸的是,在“大数据”时代,数据规模的不断增长对传统的数据分析提出了挑战。特别是,人类的认知能力是恒定的,而数据规模却不是恒定的。此外,大多数现有的工作都侧重于如何提取有趣的信息并将其呈现给用户,而不强调如果提取的信息不有趣,如何向分析人员提供选项。在本文中,我们提出了一种名为MaVis的可视化分析工具,它将多个机器学习模型与即插即用风格集成在一起,以描述输入数据。它允许分析人员选择他们喜欢的汇总数据的方式。MaVis框架为不同层次的解释提供了多个链接的分析空间。低级数据空间处理数据分组策略,而高级模型空间处理模型汇总(即集群或趋势)。MaVis还支持模型分析,可以将总结的模式可视化,并对它们进行比较和对比。该框架为研究时间序列数据集的共同运动模式提供了几种新颖的方法,这是医学、金融、商业和工程等领域的共同兴趣。最后,我们通过案例研究和使用股票价格数据集的用户研究来证明我们的框架的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信