Efficient in-memory indexing of network-constrained trajectories

Benjamin B. Krogh, Christian S. Jensen, K. Torp
{"title":"Efficient in-memory indexing of network-constrained trajectories","authors":"Benjamin B. Krogh, Christian S. Jensen, K. Torp","doi":"10.1145/2996913.2996972","DOIUrl":null,"url":null,"abstract":"With the decreasing cost and growing size of main memory, it is increasingly relevant to utilize main-memory indexing for efficient query processing. We propose SPNET, which we believe is the first in-memory index for network-constrained trajectory data. To exploit the main-memory setting SPNET exploits efficient shortest-path compression of trajectories to achieve a compact index structure. SPNET is capable of exploiting the parallel computing capabilities of modern machines and supports both intra- and inter-query parallelism. The former improves response time, and the latter improves throughput. By design, SPNET supports a wider range of query types than any single existing index. An experimental study in a real-world setting with 1.94 billion GPS records and nearly 4 million trajectories in a road network with 1.8 million edges indicates that SPNET typically offers performance improvements over the best existing indexes of 1.5 to 2 orders of magnitude.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

With the decreasing cost and growing size of main memory, it is increasingly relevant to utilize main-memory indexing for efficient query processing. We propose SPNET, which we believe is the first in-memory index for network-constrained trajectory data. To exploit the main-memory setting SPNET exploits efficient shortest-path compression of trajectories to achieve a compact index structure. SPNET is capable of exploiting the parallel computing capabilities of modern machines and supports both intra- and inter-query parallelism. The former improves response time, and the latter improves throughput. By design, SPNET supports a wider range of query types than any single existing index. An experimental study in a real-world setting with 1.94 billion GPS records and nearly 4 million trajectories in a road network with 1.8 million edges indicates that SPNET typically offers performance improvements over the best existing indexes of 1.5 to 2 orders of magnitude.
网络约束轨迹的高效内存索引
随着内存成本的不断降低和内存容量的不断增大,利用内存索引进行高效的查询处理变得越来越重要。我们提出了SPNET,我们认为这是网络约束轨迹数据的第一个内存索引。为了利用主存设置,SPNET利用轨迹的有效最短路径压缩来实现紧凑的索引结构。SPNET能够利用现代机器的并行计算能力,并支持查询内部和查询之间的并行性。前者提高了响应时间,后者提高了吞吐量。按照设计,SPNET支持的查询类型范围比任何现有索引都要广。一项实验研究表明,在一个拥有180万条边缘的道路网络中,有19.4亿个GPS记录和近400万个轨迹,SPNET通常比现有的最佳指数提供1.5到2个数量级的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信