{"title":"Efficient in-memory indexing of network-constrained trajectories","authors":"Benjamin B. Krogh, Christian S. Jensen, K. Torp","doi":"10.1145/2996913.2996972","DOIUrl":null,"url":null,"abstract":"With the decreasing cost and growing size of main memory, it is increasingly relevant to utilize main-memory indexing for efficient query processing. We propose SPNET, which we believe is the first in-memory index for network-constrained trajectory data. To exploit the main-memory setting SPNET exploits efficient shortest-path compression of trajectories to achieve a compact index structure. SPNET is capable of exploiting the parallel computing capabilities of modern machines and supports both intra- and inter-query parallelism. The former improves response time, and the latter improves throughput. By design, SPNET supports a wider range of query types than any single existing index. An experimental study in a real-world setting with 1.94 billion GPS records and nearly 4 million trajectories in a road network with 1.8 million edges indicates that SPNET typically offers performance improvements over the best existing indexes of 1.5 to 2 orders of magnitude.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
With the decreasing cost and growing size of main memory, it is increasingly relevant to utilize main-memory indexing for efficient query processing. We propose SPNET, which we believe is the first in-memory index for network-constrained trajectory data. To exploit the main-memory setting SPNET exploits efficient shortest-path compression of trajectories to achieve a compact index structure. SPNET is capable of exploiting the parallel computing capabilities of modern machines and supports both intra- and inter-query parallelism. The former improves response time, and the latter improves throughput. By design, SPNET supports a wider range of query types than any single existing index. An experimental study in a real-world setting with 1.94 billion GPS records and nearly 4 million trajectories in a road network with 1.8 million edges indicates that SPNET typically offers performance improvements over the best existing indexes of 1.5 to 2 orders of magnitude.