Hong Cai, Changjin Hong, Jianying Gu, T. Lilburn, R. Kuang, Yufeng Wang
{"title":"Prediction of novel systems components in cell cycle regulation in malaria parasite by subnetwork alignments","authors":"Hong Cai, Changjin Hong, Jianying Gu, T. Lilburn, R. Kuang, Yufeng Wang","doi":"10.1109/BIBM.2012.6392647","DOIUrl":null,"url":null,"abstract":"With 300-500 clinical cases and 1-2 million deaths yearly, malaria contributes to enormous health care and economic burden worldwide. The advent of high throughput -omics technologies is driving new approaches to the identification of potential antimalarial targets. In this paper, we propose a neighborhood subnetwork alignment approach to uncover the network components involved in cell cycle regulation of the malaria parasite Plasmodium falciparum and to assign function to previously unannotated proteins.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":"28 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With 300-500 clinical cases and 1-2 million deaths yearly, malaria contributes to enormous health care and economic burden worldwide. The advent of high throughput -omics technologies is driving new approaches to the identification of potential antimalarial targets. In this paper, we propose a neighborhood subnetwork alignment approach to uncover the network components involved in cell cycle regulation of the malaria parasite Plasmodium falciparum and to assign function to previously unannotated proteins.