A classification of modelling languages for differential-algebraic equations

Francis Lorenz
{"title":"A classification of modelling languages for differential-algebraic equations","authors":"Francis Lorenz","doi":"10.1016/S0928-4869(99)00022-1","DOIUrl":null,"url":null,"abstract":"<div><p>Several aspects can be defined for modelling languages. This paper establishes three important concepts:</p><ul><li><span>•</span><span><p>Discipline: specifies which domain(s) of science can be represented.</p></span></li><li><span>•</span><span><p>Paradigm: states the main mathematical characteristics of the language.</p></span></li><li><span>•</span><span><p>Modelling level: qualifies the semantic basement of the representation.</p></span></li></ul><p>Modelling languages can thus be positioned in a three-axis view, yielding a clear and unambiguous expression of their application scope. There is no absolute “best” choice among the modelling languages. Any simulation specialist must be aware of the characteristics of the different formalisms to be able to select the one that fits any particular problem.</p></div>","PeriodicalId":101162,"journal":{"name":"Simulation Practice and Theory","volume":"7 5","pages":"Pages 553-562"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0928-4869(99)00022-1","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Practice and Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928486999000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Several aspects can be defined for modelling languages. This paper establishes three important concepts:

  • Discipline: specifies which domain(s) of science can be represented.

  • Paradigm: states the main mathematical characteristics of the language.

  • Modelling level: qualifies the semantic basement of the representation.

Modelling languages can thus be positioned in a three-axis view, yielding a clear and unambiguous expression of their application scope. There is no absolute “best” choice among the modelling languages. Any simulation specialist must be aware of the characteristics of the different formalisms to be able to select the one that fits any particular problem.

微分代数方程建模语言的分类
可以为建模语言定义几个方面。本文建立了三个重要的概念:•学科:指定科学的哪个领域可以被表示。范式:陈述语言的主要数学特征。•建模级别:限定表示的语义基础。因此,建模语言可以在三轴视图中定位,从而产生对其应用范围的清晰而明确的表达。在建模语言中没有绝对的“最佳”选择。任何模拟专家都必须了解不同形式的特点,以便能够选择适合任何特定问题的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信