Performance Evaluation of Various Solar Forecasting Models for Structural & Endogenous Datasets

Pardeep Singla, M. Duhan, Sumit Saroha
{"title":"Performance Evaluation of Various Solar Forecasting Models for Structural & Endogenous Datasets","authors":"Pardeep Singla, M. Duhan, Sumit Saroha","doi":"10.13052/dgaej2156-3306.3825","DOIUrl":null,"url":null,"abstract":"The forecasting of solar irradiation with high precision is critical for fulfilling electricity demand. The dataset used to train the learning-based models has a direct impact on the model’s prediction accuracy. This work evaluates the impact of two types of datasets: structural and endogenous datasets over the prediction accuracy of different solar forecasting models (five variants of artificial neural network (ANN) based models, Support vector machine (SVM), Linear Regression, Bagged and Boosted Regression tree). The issue of variability estimation is also explored in the paper in order to choose the best model for a given dataset. The performance of the models is assessed using two essential error metrics: mean absolute percentage error (MAPE) and root mean square error (RMSE). The results shows that the MAPE and RMSE for structural data vary from 1.99% to 29.73% and 23.39 W/m2 to 165.21 W/m2, respectively, whereas these errors for endogenous dataset ranges from 1.98% to 31.19% and 23.64 W/m22 to 152.56 W/m22. Moreover, these findings, together with the data variability findings, suggest that SVM is the best model for all forms of data variability, whereas CFNN may be employed for greater variability.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The forecasting of solar irradiation with high precision is critical for fulfilling electricity demand. The dataset used to train the learning-based models has a direct impact on the model’s prediction accuracy. This work evaluates the impact of two types of datasets: structural and endogenous datasets over the prediction accuracy of different solar forecasting models (five variants of artificial neural network (ANN) based models, Support vector machine (SVM), Linear Regression, Bagged and Boosted Regression tree). The issue of variability estimation is also explored in the paper in order to choose the best model for a given dataset. The performance of the models is assessed using two essential error metrics: mean absolute percentage error (MAPE) and root mean square error (RMSE). The results shows that the MAPE and RMSE for structural data vary from 1.99% to 29.73% and 23.39 W/m2 to 165.21 W/m2, respectively, whereas these errors for endogenous dataset ranges from 1.98% to 31.19% and 23.64 W/m22 to 152.56 W/m22. Moreover, these findings, together with the data variability findings, suggest that SVM is the best model for all forms of data variability, whereas CFNN may be employed for greater variability.
结构和内生数据集的各种太阳预报模型的性能评价
太阳辐射的高精度预测是满足电力需求的关键。用于训练基于学习的模型的数据集直接影响模型的预测精度。本研究评估了两种类型的数据集:结构数据集和内生数据集对不同太阳预测模型(基于人工神经网络(ANN)模型的五种变体、支持向量机(SVM)、线性回归、Bagged和boosting回归树)预测精度的影响。本文还探讨了变率估计问题,以便为给定的数据集选择最佳模型。使用两个基本误差指标评估模型的性能:平均绝对百分比误差(MAPE)和均方根误差(RMSE)。结果表明,结构数据的MAPE和RMSE分别为1.99% ~ 29.73%和23.39 ~ 165.21 W/m2,而内源数据的MAPE和RMSE分别为1.98% ~ 31.19%和23.64 ~ 152.56 W/m22。此外,这些发现以及数据变异性的发现表明,支持向量机是所有形式的数据变异性的最佳模型,而CFNN可能用于更大的变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信