Coordinate-Free Carlsson-Weinshall Duality and Relative Multi-View Geometry

Matthew Trager, M. Hebert, J. Ponce
{"title":"Coordinate-Free Carlsson-Weinshall Duality and Relative Multi-View Geometry","authors":"Matthew Trager, M. Hebert, J. Ponce","doi":"10.1109/CVPR.2019.00031","DOIUrl":null,"url":null,"abstract":"We present a coordinate-free description of Carlsson-Weinshall duality between scene points and camera pinholes and use it to derive a new characterization of primal/dual multi-view geometry. In the case of three views, a particular set of reduced trilinearities provide a novel parameterization of camera geometry that, unlike existing ones, is subject only to very simple internal constraints. These trilinearities lead to new \"quasi-linear\" algorithms for primal and dual structure from motion. We include some preliminary experiments with real and synthetic data.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"19 1","pages":"225-233"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a coordinate-free description of Carlsson-Weinshall duality between scene points and camera pinholes and use it to derive a new characterization of primal/dual multi-view geometry. In the case of three views, a particular set of reduced trilinearities provide a novel parameterization of camera geometry that, unlike existing ones, is subject only to very simple internal constraints. These trilinearities lead to new "quasi-linear" algorithms for primal and dual structure from motion. We include some preliminary experiments with real and synthetic data.
无坐标Carlsson-Weinshall对偶和相对多视图几何
我们提出了场景点和相机针孔之间的Carlsson-Weinshall对偶性的无坐标描述,并利用它推导了原始/对偶多视图几何的新表征。在三个视图的情况下,一组特定的简化三线性提供了一种新的相机几何参数化,与现有的不同,它只受非常简单的内部约束。这些三线性导致了新的“准线性”算法从运动的原始和对偶结构。我们包含了一些真实和合成数据的初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信