Samuel JG Cooper , Geoffrey P Hammond , Neil Hewitt , Jonathan B Norman , Savvas A Tassou , Walid Youssef
{"title":"Energy saving potential of high temperature heat pumps in the UK Food and Drink sector","authors":"Samuel JG Cooper , Geoffrey P Hammond , Neil Hewitt , Jonathan B Norman , Savvas A Tassou , Walid Youssef","doi":"10.1016/j.egypro.2019.02.073","DOIUrl":null,"url":null,"abstract":"<div><p>Addressing GHG emissions from industry is vital to achieving decarbonisation targets. However, finding alternatives to many industrial energy requirements remains a challenge. Many processes in the food sector require heat at relatively low temperatures (i.e. 80°C to 200°C). High temperature heat pumps under development present a heat source that is efficient (especially if coupled with waste heat sources) and low carbon (especially if powered by decarbonised electricity). This study analysed their potential in the UK Dairy sub-sector and extrapolates this to the wider Food and Drink sector. There is potential to save approximately 164 kt-CO<sub>2</sub>/yr in the modelled processes. Applied to similar processes across the Food and Drink sector, there is scope to save 2.6 Mt-CO<sub>2</sub>/yr with projected 2030 grid electricity emissions factors. High temperature heat pumps have the potential to save energy and reduce GHG emissions. These GHG savings will increase further as the electrical grid continues to be decarbonised. While fuel cost savings are possible, these depend upon the processes and become more significant with projected fuel prices.</p></div>","PeriodicalId":11517,"journal":{"name":"Energy Procedia","volume":"161 ","pages":"Pages 142-149"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.egypro.2019.02.073","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187661021931152X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Addressing GHG emissions from industry is vital to achieving decarbonisation targets. However, finding alternatives to many industrial energy requirements remains a challenge. Many processes in the food sector require heat at relatively low temperatures (i.e. 80°C to 200°C). High temperature heat pumps under development present a heat source that is efficient (especially if coupled with waste heat sources) and low carbon (especially if powered by decarbonised electricity). This study analysed their potential in the UK Dairy sub-sector and extrapolates this to the wider Food and Drink sector. There is potential to save approximately 164 kt-CO2/yr in the modelled processes. Applied to similar processes across the Food and Drink sector, there is scope to save 2.6 Mt-CO2/yr with projected 2030 grid electricity emissions factors. High temperature heat pumps have the potential to save energy and reduce GHG emissions. These GHG savings will increase further as the electrical grid continues to be decarbonised. While fuel cost savings are possible, these depend upon the processes and become more significant with projected fuel prices.