Prediction of 5G New Radio Wireless Channel Path Gains and Delays Using Machine Learning and CSI Feedback

Ben Earle, A. Al-Habashna, Gabriel A. Wainer, Xingliang Li, Guoqiang Xue
{"title":"Prediction of 5G New Radio Wireless Channel Path Gains and Delays Using Machine Learning and CSI Feedback","authors":"Ben Earle, A. Al-Habashna, Gabriel A. Wainer, Xingliang Li, Guoqiang Xue","doi":"10.23919/ANNSIM52504.2021.9552072","DOIUrl":null,"url":null,"abstract":"Next generation wireless communication systems use massive Multi Input Multi Output (m-MIMO) antenna arrays for their enhanced beamforming capabilities. Providing accurate Channel State Information (CSI) is vital for optimizing m-MIMO communication systems. The complexity of channel reconstruction grows exponentially with the number of antennas, causing traditional methods to become increasingly complicated. Machine-learning techniques can be a useful alternative for channel reconstruction using partial CSI feedback. This paper presents the results of a simulation study built using the MATLAB 5G Toolbox and a neural network trained using the simulated data. The simulator emulates a 5G channel to generate its path delays and gains, and the realistic CSI feedback. This data was used to train and test a neural network to estimate the dominant path gains and delays. The models showed promising results while operating on limited CSI data.","PeriodicalId":6782,"journal":{"name":"2021 Annual Modeling and Simulation Conference (ANNSIM)","volume":"8 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Annual Modeling and Simulation Conference (ANNSIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ANNSIM52504.2021.9552072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Next generation wireless communication systems use massive Multi Input Multi Output (m-MIMO) antenna arrays for their enhanced beamforming capabilities. Providing accurate Channel State Information (CSI) is vital for optimizing m-MIMO communication systems. The complexity of channel reconstruction grows exponentially with the number of antennas, causing traditional methods to become increasingly complicated. Machine-learning techniques can be a useful alternative for channel reconstruction using partial CSI feedback. This paper presents the results of a simulation study built using the MATLAB 5G Toolbox and a neural network trained using the simulated data. The simulator emulates a 5G channel to generate its path delays and gains, and the realistic CSI feedback. This data was used to train and test a neural network to estimate the dominant path gains and delays. The models showed promising results while operating on limited CSI data.
利用机器学习和CSI反馈预测5G新无线电无线信道路径增益和延迟
下一代无线通信系统使用大规模多输入多输出(m-MIMO)天线阵列来增强波束形成能力。提供准确的信道状态信息(CSI)对于优化m-MIMO通信系统至关重要。随着天线数量的增加,信道重建的复杂性呈指数级增长,使得传统的方法变得越来越复杂。机器学习技术可以成为使用部分CSI反馈进行信道重建的有用替代方法。本文介绍了利用MATLAB 5G工具箱构建的仿真研究结果和利用仿真数据训练的神经网络。该模拟器模拟了5G信道,以产生其路径延迟和增益,以及真实的CSI反馈。该数据用于训练和测试神经网络,以估计主导路径增益和延迟。这些模型在有限的CSI数据上显示出令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信