Fluctuations of the spectrum in rotationally invariant random matrix ensembles

Pub Date : 2019-12-24 DOI:10.1142/s2010326321500258
Elizabeth Meckes, M. Meckes
{"title":"Fluctuations of the spectrum in rotationally invariant random matrix ensembles","authors":"Elizabeth Meckes, M. Meckes","doi":"10.1142/s2010326321500258","DOIUrl":null,"url":null,"abstract":"We investigate traces of powers of random matrices whose distributions are invariant under rotations (with respect to the Hilbert–Schmidt inner product) within a real-linear subspace of the space of [Formula: see text] matrices. The matrices, we consider may be real or complex, and Hermitian, antihermitian, or general. We use Stein’s method to prove multivariate central limit theorems, with convergence rates, for these traces of powers, which imply central limit theorems for polynomial linear eigenvalue statistics. In contrast to the usual situation in random matrix theory, in our approach general, nonnormal matrices turn out to be easier to study than Hermitian matrices.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326321500258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate traces of powers of random matrices whose distributions are invariant under rotations (with respect to the Hilbert–Schmidt inner product) within a real-linear subspace of the space of [Formula: see text] matrices. The matrices, we consider may be real or complex, and Hermitian, antihermitian, or general. We use Stein’s method to prove multivariate central limit theorems, with convergence rates, for these traces of powers, which imply central limit theorems for polynomial linear eigenvalue statistics. In contrast to the usual situation in random matrix theory, in our approach general, nonnormal matrices turn out to be easier to study than Hermitian matrices.
分享
查看原文
旋转不变随机矩阵系综中谱的波动
我们研究了在[公式:见文本]矩阵空间的实线性子空间中,其分布在旋转下(关于Hilbert-Schmidt内积)不变的随机矩阵的幂的迹。我们考虑的矩阵可以是实数或复数,厄米矩阵,反厄米矩阵,或一般矩阵。我们使用Stein的方法证明了这些幂迹的多元中心极限定理,并具有收敛率,这意味着多项式线性特征值统计的中心极限定理。与随机矩阵理论中的通常情况相反,在我们的一般方法中,非正常矩阵比厄米矩阵更容易研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信