A method of extracting malware features based on gini impurity increment and improved TF-IDF

Shimiao Sun, Yashu Liu
{"title":"A method of extracting malware features based on gini impurity increment and improved TF-IDF","authors":"Shimiao Sun, Yashu Liu","doi":"10.34028/iajit/20/3/14","DOIUrl":null,"url":null,"abstract":"In recent years, the quantities and types of malwares have grown explosively, which bring many challenges to identify and detect them. In order to improve the identification efficiency of malicious code, a malicious code feature representation method based on feature dimension reduction is proposed. By fusing the Gini impurity increment and the Improved Term Frequency-Inverse Document Frequency algorithm (ITF-IDF), ΔGini-Improving Term frequency inverse document frequency (ΔGini-ITFIDF) method is presented, which can get more valuable assembly instruction features for family detection. ΔGini-ITFIDF standardizes the assembly instructions of the PE disassembly files, then, measures the two indicators of the expected error rate increment and weight of the malicious code assembly instruction features, and obtains more valuable features to identify malicious codes. The experimental results show that the classification accuracy of the ITF-IDF algorithm is significantly improved compared with the ITF-IDF algorithm. At the same time, ΔGini-ITFIDF can effectively improve the classification performance.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/3/14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, the quantities and types of malwares have grown explosively, which bring many challenges to identify and detect them. In order to improve the identification efficiency of malicious code, a malicious code feature representation method based on feature dimension reduction is proposed. By fusing the Gini impurity increment and the Improved Term Frequency-Inverse Document Frequency algorithm (ITF-IDF), ΔGini-Improving Term frequency inverse document frequency (ΔGini-ITFIDF) method is presented, which can get more valuable assembly instruction features for family detection. ΔGini-ITFIDF standardizes the assembly instructions of the PE disassembly files, then, measures the two indicators of the expected error rate increment and weight of the malicious code assembly instruction features, and obtains more valuable features to identify malicious codes. The experimental results show that the classification accuracy of the ITF-IDF algorithm is significantly improved compared with the ITF-IDF algorithm. At the same time, ΔGini-ITFIDF can effectively improve the classification performance.
基于gini杂质增量和改进TF-IDF的恶意软件特征提取方法
近年来,恶意软件的数量和类型呈爆炸式增长,这给恶意软件的识别和检测带来了许多挑战。为了提高恶意代码的识别效率,提出了一种基于特征降维的恶意代码特征表示方法。通过融合Gini杂质增量和改进的词频逆文档频率算法(ITF-IDF),提出了ΔGini-Improving词频逆文档频率(ΔGini-ITFIDF)方法,该方法可以获得更多有价值的汇编指令特征,用于家族检测。ΔGini-ITFIDF对PE反汇编文件的汇编指令进行标准化,然后对恶意代码汇编指令特征的期望错误率增量和权重两个指标进行度量,从而获得更多有价值的特征来识别恶意代码。实验结果表明,与ITF-IDF算法相比,ITF-IDF算法的分类精度有显著提高。同时,ΔGini-ITFIDF可以有效地提高分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信