{"title":"Estimating data-dependent jitter of a general LTI system from step response","authors":"B. Analui, J. Buckwalter, A. Hajimiri","doi":"10.1109/MWSYM.2005.1517087","DOIUrl":null,"url":null,"abstract":"We present a method for estimating data dependent jitter (DDJ) introduced by a general LTI system, based on the system's step response. A perturbation technique is used to generalize the analytical expression for DDJ. Different scales of DDJ are defined that characterize the probability distribution of jitter. In particular, we identify a dominant prior bit that signifies the well-known distribution of DDJ, the two impulse functions. We also highlight that system bandwidth is not a complete measure for predicting DDJ. We verify our generalized analytical expression of DDJ experimentally and show that estimation errors are less than 7.5%.","PeriodicalId":13133,"journal":{"name":"IEEE MTT-S International Microwave Symposium Digest, 2005.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2005-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MTT-S International Microwave Symposium Digest, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2005.1517087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We present a method for estimating data dependent jitter (DDJ) introduced by a general LTI system, based on the system's step response. A perturbation technique is used to generalize the analytical expression for DDJ. Different scales of DDJ are defined that characterize the probability distribution of jitter. In particular, we identify a dominant prior bit that signifies the well-known distribution of DDJ, the two impulse functions. We also highlight that system bandwidth is not a complete measure for predicting DDJ. We verify our generalized analytical expression of DDJ experimentally and show that estimation errors are less than 7.5%.