On stability of the fibres of Hopf surfaces as harmonic maps and minimal surfaces

Jingyi Chen, Liding Huang
{"title":"On stability of the fibres of Hopf surfaces as harmonic maps and minimal surfaces","authors":"Jingyi Chen, Liding Huang","doi":"10.1090/tran/8520","DOIUrl":null,"url":null,"abstract":"We construct a family of Hermitian metrics on the Hopf surface $ \\mathbb{S}^3\\times \\mathbb{S}^1$, whose fundamental classes represent distinct cohomology classes in the Aeppli cohomology group. These metrics are locally conformally Kahler. Among the toric fibres of $\\pi:\\mathbb{S}^{3} \\times \\mathbb{S}^1\\to\\mathbb{C} P^1$ two of them are stable minimal surfaces and each of the two has a neighbourhood so that fibres therein are given by stable harmonic maps from 2-torus and outside, far away from the two tori, there are unstable harmonic ones that are also unstable minimal surfaces.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tran/8520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a family of Hermitian metrics on the Hopf surface $ \mathbb{S}^3\times \mathbb{S}^1$, whose fundamental classes represent distinct cohomology classes in the Aeppli cohomology group. These metrics are locally conformally Kahler. Among the toric fibres of $\pi:\mathbb{S}^{3} \times \mathbb{S}^1\to\mathbb{C} P^1$ two of them are stable minimal surfaces and each of the two has a neighbourhood so that fibres therein are given by stable harmonic maps from 2-torus and outside, far away from the two tori, there are unstable harmonic ones that are also unstable minimal surfaces.
Hopf曲面作为调和映射和最小曲面的纤维的稳定性
在Hopf曲面$ \mathbb{S}^3\乘以\mathbb{S}^1$上构造了一个厄米度量族,其基类表示Aeppli上同群中的不同上同族。这些度量是局部保形Kahler。在$\pi:\mathbb{S}^{3} \乘以\mathbb{S}^1\到\mathbb{C} P^1$的环面纤维中,其中两个是稳定的最小曲面,并且每个都有一个邻域,因此其中的纤维是由2环面的稳定调和映射给出的,而在远离这两个环面的外面,存在不稳定的调和曲面,它们也是不稳定的最小曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信