Analysis of blow-ups for the double obstacle problem in dimension two

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
G. Aleksanyan
{"title":"Analysis of blow-ups for the double obstacle problem in dimension two","authors":"G. Aleksanyan","doi":"10.4171/IFB/419","DOIUrl":null,"url":null,"abstract":"In this article we study a normalised double obstacle problem with polynomial obstacles $ p^1\\leq p^2$ under the assumption that $ p^1(x)=p^2(x)$ iff $ x=0$. In dimension two we give a complete characterisation of blow-up solutions depending on the coefficients of the polynomials $p^1, p^2$. In particular, we see that there exists a new type of blow-ups, that we call double-cone solutions since the coincidence sets $\\{u=p^1\\}$ and $\\{u=p^2\\}$ are cones with a common vertex. We prove the uniqueness of blow-up limits, and analyse the regularity of the free boundary in dimension two. In particular we show that if the solution to the double obstacle problem has a double-cone blow-up limit at the origin, then locally the free boundary consists of four $C^{1,\\gamma}$-curves, meeting at the origin. In the end we give an example of a three-dimensional double-cone solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2017-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/419","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

In this article we study a normalised double obstacle problem with polynomial obstacles $ p^1\leq p^2$ under the assumption that $ p^1(x)=p^2(x)$ iff $ x=0$. In dimension two we give a complete characterisation of blow-up solutions depending on the coefficients of the polynomials $p^1, p^2$. In particular, we see that there exists a new type of blow-ups, that we call double-cone solutions since the coincidence sets $\{u=p^1\}$ and $\{u=p^2\}$ are cones with a common vertex. We prove the uniqueness of blow-up limits, and analyse the regularity of the free boundary in dimension two. In particular we show that if the solution to the double obstacle problem has a double-cone blow-up limit at the origin, then locally the free boundary consists of four $C^{1,\gamma}$-curves, meeting at the origin. In the end we give an example of a three-dimensional double-cone solution.
二维双障碍问题的爆破分析
本文研究了一个具有多项式障碍$ p^1\leq p^2$的归一化双障碍问题,假设$ p^1(x)=p^2(x)$ iff $ x=0$。在二维中,我们给出了依赖于多项式系数$p^1, p^2$的爆破解的完整表征。特别地,我们看到存在一种新的膨胀,我们称之为双锥解,因为重合集$\{u=p^1\}$和$\{u=p^2\}$是具有共同顶点的锥。证明了爆破极限的唯一性,分析了二维自由边界的正则性。特别地,我们证明了如果双障碍问题的解在原点处具有双锥爆破极限,那么局部自由边界由四条$C^{1,\gamma}$ -曲线组成,在原点处相遇。最后给出了三维双锥解的一个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信