New Criteria for Polynomial Regression

IF 0.6
M. Pakdemirli
{"title":"New Criteria for Polynomial Regression","authors":"M. Pakdemirli","doi":"10.37394/232020.2022.2.4","DOIUrl":null,"url":null,"abstract":"The order of a polynomial for approximating a given data is important in a polynomial regression analysis. By normalizing the data and employing the order of magnitudes from the perturbation theory, new theorems are posed and proven. The theorems outline the basic features of the regression coefficients for the normalized data. Using the theorems and the described algorithm, the optimal degree of a polynomial can be determined. This task is a multiple criteria decision task and numerical examples are given to outline the basics of the algorithm.","PeriodicalId":93382,"journal":{"name":"The international journal of evidence & proof","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of evidence & proof","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232020.2022.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The order of a polynomial for approximating a given data is important in a polynomial regression analysis. By normalizing the data and employing the order of magnitudes from the perturbation theory, new theorems are posed and proven. The theorems outline the basic features of the regression coefficients for the normalized data. Using the theorems and the described algorithm, the optimal degree of a polynomial can be determined. This task is a multiple criteria decision task and numerical examples are given to outline the basics of the algorithm.
多项式回归的新准则
在多项式回归分析中,用来逼近给定数据的多项式的阶数是很重要的。通过对数据进行归一化并采用摄动理论的数量级,提出并证明了新的定理。这些定理概括了归一化数据的回归系数的基本特征。利用这些定理和所描述的算法,可以确定多项式的最优度。该任务是一个多准则决策任务,并给出了数值示例来概述算法的基本原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信