A Route Recommender System Based on Current and Historical Crowdsourcing

Marlene Goncalves, Patrick Rengifo, Daniel A. Rodriguez, Ivette C. Martínez
{"title":"A Route Recommender System Based on Current and Historical Crowdsourcing","authors":"Marlene Goncalves, Patrick Rengifo, Daniel A. Rodriguez, Ivette C. Martínez","doi":"10.4018/978-1-5225-0648-5.CH005","DOIUrl":null,"url":null,"abstract":"Due to the rise of the social networks it's possible to use techniques based on crowdsourcing to easily gather real-time information directly from citizens in order to create recommendation systems capable to employ knowledge that is shared from the crowd. Particularly, in Twitter, the users publish a big amount of short messages; however, to automatically extract useful information from Twitter is a complex task. In order to provide an informed recommendation of the current best route between two city points, this chapter introduces a workflow that integrates natural language techniques to build an vector of features for training two linear classifiers which obtain current information from Twitter, and integrates that information with historical information about possible routes using exponential smoothing; current and historical data to feed a route selection algorithm based on Dijkstra. The effectiveness of the proposed workflow is shown with routes between two interest points in Caracas (Venezuela).","PeriodicalId":87339,"journal":{"name":"Proceedings of the ... AAAI Conference on Human Computation and Crowdsourcing","volume":"234 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... AAAI Conference on Human Computation and Crowdsourcing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-0648-5.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the rise of the social networks it's possible to use techniques based on crowdsourcing to easily gather real-time information directly from citizens in order to create recommendation systems capable to employ knowledge that is shared from the crowd. Particularly, in Twitter, the users publish a big amount of short messages; however, to automatically extract useful information from Twitter is a complex task. In order to provide an informed recommendation of the current best route between two city points, this chapter introduces a workflow that integrates natural language techniques to build an vector of features for training two linear classifiers which obtain current information from Twitter, and integrates that information with historical information about possible routes using exponential smoothing; current and historical data to feed a route selection algorithm based on Dijkstra. The effectiveness of the proposed workflow is shown with routes between two interest points in Caracas (Venezuela).
基于当前和历史众包的路线推荐系统
由于社交网络的兴起,使用基于众包的技术来轻松地直接从公民那里收集实时信息,从而创建能够利用从人群中共享的知识的推荐系统成为可能。特别是在Twitter上,用户发布了大量的短消息;然而,从Twitter中自动提取有用的信息是一项复杂的任务。为了提供两个城市点之间当前最佳路线的明智推荐,本章介绍了一个集成了自然语言技术的工作流,该工作流构建了一个特征向量,用于训练两个线性分类器,该分类器从Twitter获取当前信息,并使用指数平滑将该信息与可能路线的历史信息集成;当前和历史数据,以提供基于Dijkstra的路由选择算法。提出的工作流程的有效性显示了加拉加斯(委内瑞拉)两个兴趣点之间的路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信