Quantitative unique continuation for parabolic equations with Neumann boundary conditions

IF 1 4区 数学 Q1 MATHEMATICS
Yueliang Duan, Lijuan Wang, Can Zhang
{"title":"Quantitative unique continuation for parabolic equations with Neumann boundary conditions","authors":"Yueliang Duan, Lijuan Wang, Can Zhang","doi":"10.3934/mcrf.2022058","DOIUrl":null,"url":null,"abstract":"In this paper, we establish a globally quantitative estimate of unique continuation at one time point for solutions of parabolic equations with Neumann boundary conditions in bounded domains. Our proof is mainly based on Carleman commutator estimates and a global frequency function argument, which is motivated from a recent work [5]. As an application, we obtain an observability inequality from measurable sets in time for all solutions of the above equations.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"214 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022058","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we establish a globally quantitative estimate of unique continuation at one time point for solutions of parabolic equations with Neumann boundary conditions in bounded domains. Our proof is mainly based on Carleman commutator estimates and a global frequency function argument, which is motivated from a recent work [5]. As an application, we obtain an observability inequality from measurable sets in time for all solutions of the above equations.
具有Neumann边界条件的抛物方程的定量唯一延拓
本文建立了有界区域上具有Neumann边界条件的抛物型方程解在一时间点唯一延拓的全局定量估计。我们的证明主要基于Carleman换向子估计和一个全局频率函数参数,该参数来源于最近的一项工作[5]。作为应用,我们得到了上述方程的所有解在时间上的可测集上的一个可观测不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Control and Related Fields
Mathematical Control and Related Fields MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
8.30%
发文量
67
期刊介绍: MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信