Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential

IF 1.2 2区 数学 Q1 MATHEMATICS
D. Brander, J. Dorfmeister
{"title":"Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential","authors":"D. Brander, J. Dorfmeister","doi":"10.2422/2036-2145.201302_012","DOIUrl":null,"url":null,"abstract":"We define certain deformations between minimal and non-minimal \nconstant mean curvature (CMC) surfaces in Euclidean space E3 which preserve \nthe Hopf differential. We prove that, given a CMC H surface f , either minimal \nor not, and a fixed basepoint z0 on this surface, there is a naturally defined family \nfh, for all h 2 R, of CMC h surfaces that are tangent to f at z0, and which \nhave the same Hopf differential. Given the classical Weierstrass data for a minimal \nsurface, we give an explicit formula for the generalized Weierstrass data for \nthe non-minimal surfaces fh, and vice versa. As an application, we use this to \ngive a well-defined dressing action on the class of minimal surfaces. In addition, \nwe show that symmetries of certain types associated with the basepoint are preserved \nunder the deformation, and this gives a canonical choice of basepoint for \nsurfaces with symmetries. We use this to define new examples of non-minimal \nCMC surfaces naturally associated to known minimal surfaces with symmetries.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"8 1","pages":"645-675"},"PeriodicalIF":1.2000,"publicationDate":"2013-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201302_012","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We define certain deformations between minimal and non-minimal constant mean curvature (CMC) surfaces in Euclidean space E3 which preserve the Hopf differential. We prove that, given a CMC H surface f , either minimal or not, and a fixed basepoint z0 on this surface, there is a naturally defined family fh, for all h 2 R, of CMC h surfaces that are tangent to f at z0, and which have the same Hopf differential. Given the classical Weierstrass data for a minimal surface, we give an explicit formula for the generalized Weierstrass data for the non-minimal surfaces fh, and vice versa. As an application, we use this to give a well-defined dressing action on the class of minimal surfaces. In addition, we show that symmetries of certain types associated with the basepoint are preserved under the deformation, and this gives a canonical choice of basepoint for surfaces with symmetries. We use this to define new examples of non-minimal CMC surfaces naturally associated to known minimal surfaces with symmetries.
保持对称性和Hopf微分的等平均曲率曲面的变形
定义了欧氏空间E3中最小和非最小常平均曲率曲面之间保持Hopf微分的形变。我们证明了,给定一个CMC H曲面f,无论是否最小,并且在该曲面上有一个固定的基点z0,对于所有h2r,存在一个自然定义的族fh,它们与f相切于z0,并且具有相同的Hopf微分。给定最小曲面的经典Weierstrass数据,我们给出了非最小曲面fh的广义Weierstrass数据的显式公式,反之亦然。作为一个应用,我们用它来给出一个定义良好的修整动作的类最小表面。此外,我们证明了与基点相关的某些类型的对称性在变形下保持不变,这为具有对称性的表面提供了一个标准的基点选择。我们用它来定义非最小CMC表面的新例子,这些表面自然地与已知的具有对称性的最小表面相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信