Fuzzy entropy threshold approach to breast cancer detection

Xueqin Li, Zhiwei Zhao, H.D. Cheng
{"title":"Fuzzy entropy threshold approach to breast cancer detection","authors":"Xueqin Li,&nbsp;Zhiwei Zhao,&nbsp;H.D. Cheng","doi":"10.1016/1069-0115(94)00019-X","DOIUrl":null,"url":null,"abstract":"<div><p>Thresholding plays an important role in image processing. To select a suitable threshold requires some criteria on which to base the selection. A criterion of maximum fuzzy entropy is developed for selecting the threshold. In this algorithm, the degree of ambiguity in an image is measured by the entropy of a fuzzy set. The threshold is selected by maximizing the fuzzy entropy of the image. The effectiveness of the algorithm is demonstrated for different bandwidths of the membership functions using noisy and vague microscopic-slide breast cancer images. The results show that this method is useful for breast cancer detection. Moreover, this method can be applied to a wide range of image processing applications.</p></div>","PeriodicalId":100668,"journal":{"name":"Information Sciences - Applications","volume":"4 1","pages":"Pages 49-56"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1069-0115(94)00019-X","citationCount":"96","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences - Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/106901159400019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

Abstract

Thresholding plays an important role in image processing. To select a suitable threshold requires some criteria on which to base the selection. A criterion of maximum fuzzy entropy is developed for selecting the threshold. In this algorithm, the degree of ambiguity in an image is measured by the entropy of a fuzzy set. The threshold is selected by maximizing the fuzzy entropy of the image. The effectiveness of the algorithm is demonstrated for different bandwidths of the membership functions using noisy and vague microscopic-slide breast cancer images. The results show that this method is useful for breast cancer detection. Moreover, this method can be applied to a wide range of image processing applications.

模糊熵阈值法在乳腺癌检测中的应用
阈值分割在图像处理中起着重要的作用。要选择合适的阈值,需要一些标准作为选择的基础。提出了最大模糊熵准则来选择阈值。该算法通过模糊集的熵来衡量图像的模糊程度。通过最大化图像的模糊熵来选择阈值。该算法的有效性证明了不同带宽的隶属函数使用噪声和模糊显微镜载玻片乳腺癌图像。结果表明,该方法对乳腺癌的检测是有用的。此外,该方法可以应用于广泛的图像处理应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信