Jiuqiang Chen, Sarah Cohen Boulakia, C. Froidevaux, C. Goble, P. Missier, Alan R. Williams
{"title":"DistillFlow: removing redundancy in scientific workflows","authors":"Jiuqiang Chen, Sarah Cohen Boulakia, C. Froidevaux, C. Goble, P. Missier, Alan R. Williams","doi":"10.1145/2618243.2618287","DOIUrl":null,"url":null,"abstract":"Scientific workflows management systems are increasingly used by scientists to specify complex data processing pipelines. Workflows are represented using a graph structure, where nodes represent tasks and links represent the dataflow. However, the complexity of workflow structures is increasing over time, reducing the rate of scientific workflows reuse. Here, we introduce DistillFlow, a tool based on effective methods for workflow design, with a focus on the Taverna model. DistillFlow is able to detect \"anti-patterns\" in the structure of workflows (idiomatic forms that lead to over-complicated design) and replace them with different patterns to reduce the workflow's overall structural complexity. Rewriting workflows in this way is beneficial both in terms of user experience and workflow maintenance.","PeriodicalId":74773,"journal":{"name":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","volume":"26 1","pages":"46:1-46:4"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific and statistical database management : International Conference, SSDBM ... : proceedings. International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2618243.2618287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Scientific workflows management systems are increasingly used by scientists to specify complex data processing pipelines. Workflows are represented using a graph structure, where nodes represent tasks and links represent the dataflow. However, the complexity of workflow structures is increasing over time, reducing the rate of scientific workflows reuse. Here, we introduce DistillFlow, a tool based on effective methods for workflow design, with a focus on the Taverna model. DistillFlow is able to detect "anti-patterns" in the structure of workflows (idiomatic forms that lead to over-complicated design) and replace them with different patterns to reduce the workflow's overall structural complexity. Rewriting workflows in this way is beneficial both in terms of user experience and workflow maintenance.