V. Bolobov, A. Petkova, G. G. Popov, V. Zlotin, I. U. Latipov, A. O. Sherstneva, I. Zhuikov
{"title":"Comparative analysis of compressed hydrogen losses during its transportation through the pipelines from different materials","authors":"V. Bolobov, A. Petkova, G. G. Popov, V. Zlotin, I. U. Latipov, A. O. Sherstneva, I. Zhuikov","doi":"10.22349/1994-6716-2023-113-1-124-133","DOIUrl":null,"url":null,"abstract":"The authors estimate possible losses of transported compressed hydrogen (P = 10 MPa) due to diffusion through the pipe wall applying Sieverts law and Arrhenius equation and using tabular data on the coefficients of permeability and solubility. The calculation was carried out for pipelines made of various metallic and non-metallic materials at room and elevated temperatures. It is shown that the volume of the diffused gas at T = 298°K (25°С) is only fractions of a percent of the pumped hydrogen volume. At the same time, the biggest loss occurs in a pipeline made of polyethylene (~0.03%), and the most insignificant one in austenitic steels (~10-6%). For carbon and low-alloy steels, the main materials of gas pipelines, these losses are at the level of 10-4–10-5 %. When the temperature rises to 683°K (410°C), the losses in steel pipelines increase to 0.25%, in polymer pipelines to 20%.","PeriodicalId":23679,"journal":{"name":"Voprosy Materialovedeniya","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Voprosy Materialovedeniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22349/1994-6716-2023-113-1-124-133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The authors estimate possible losses of transported compressed hydrogen (P = 10 MPa) due to diffusion through the pipe wall applying Sieverts law and Arrhenius equation and using tabular data on the coefficients of permeability and solubility. The calculation was carried out for pipelines made of various metallic and non-metallic materials at room and elevated temperatures. It is shown that the volume of the diffused gas at T = 298°K (25°С) is only fractions of a percent of the pumped hydrogen volume. At the same time, the biggest loss occurs in a pipeline made of polyethylene (~0.03%), and the most insignificant one in austenitic steels (~10-6%). For carbon and low-alloy steels, the main materials of gas pipelines, these losses are at the level of 10-4–10-5 %. When the temperature rises to 683°K (410°C), the losses in steel pipelines increase to 0.25%, in polymer pipelines to 20%.