Proof of Saffari's near-orthogonality conjecture for ultraflat sequences of unimodular polynomials

Tamás Erdélyi
{"title":"Proof of Saffari's near-orthogonality conjecture for ultraflat sequences of unimodular polynomials","authors":"Tamás Erdélyi","doi":"10.1016/S0764-4442(01)02116-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mtext>P</mtext><msub><mi></mi><mn>n</mn></msub><mtext>(z)=∑</mtext><msub><mi></mi><mn>k=0</mn></msub><msup><mi></mi><mn>n</mn></msup><mtext>a</mtext><msub><mi></mi><mn>k,n</mn></msub><mtext>z</mtext><msup><mi></mi><mn>k</mn></msup><mtext>∈</mtext><mtext>C</mtext><mspace></mspace><mtext>[z]</mtext></math></span> be a sequence of unimodular polynomials (|<em>a</em><sub><em>k</em>,<em>n</em></sub>|=1 for all <em>k</em>, <em>n</em>) which is ultraflat in the sense of Kahane, i.e., <span><span><span><math><mtext>lim</mtext><mtext>n→∞</mtext><mspace></mspace><mtext>max</mtext><mtext>|z|=1</mtext><mtext>|(n+1)</mtext><msup><mi></mi><mn>−1/2</mn></msup><mtext>|P</mtext><msub><mi></mi><mn>n</mn></msub><mtext>(z)|−1|=0.</mtext></math></span></span></span> We prove the following conjecture of Saffari (1991): ∑<sub><em>k</em>=0</sub><sup><em>n</em></sup><em>a</em><sub><em>k</em>,<em>n</em></sub><em>a</em><sub><em>n</em>−<em>k</em>,<em>n</em></sub>=o(<em>n</em>) as <em>n</em>→∞, that is, the polynomial <em>P</em><sub><em>n</em></sub>(<em>z</em>) and its “conjugate reciprocal” <span><math><mtext>P</mtext><msub><mi></mi><mn>n</mn></msub><msup><mi></mi><mn>∗</mn></msup><mtext>(z)=∑</mtext><msub><mi></mi><mn>k=0</mn></msub><msup><mi></mi><mn>n</mn></msup><mtext>a</mtext><msub><mi></mi><mn>n−k,n</mn></msub><mtext>z</mtext><msup><mi></mi><mn>k</mn></msup></math></span> become “nearly orthogonal” as <em>n</em>→∞. To this end we use results from [3] where (as well as in [5]) we studied the structure of ultraflat polynomials and proved several conjectures of Saffari.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 623-628"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02116-4","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Let Pn(z)=∑k=0nak,nzkC[z] be a sequence of unimodular polynomials (|ak,n|=1 for all k, n) which is ultraflat in the sense of Kahane, i.e., limn→∞max|z|=1|(n+1)−1/2|Pn(z)|−1|=0. We prove the following conjecture of Saffari (1991): ∑k=0nak,nank,n=o(n) as n→∞, that is, the polynomial Pn(z) and its “conjugate reciprocal” Pn(z)=∑k=0nan−k,nzk become “nearly orthogonal” as n→∞. To this end we use results from [3] where (as well as in [5]) we studied the structure of ultraflat polynomials and proved several conjectures of Saffari.

单模多项式超平坦序列的Saffari近正交猜想的证明
设Pn(z)=∑k=0nak,nzk∈C[z]为Kahane意义上的超平坦的单模多项式序列(|ak,n|=1),即limn→∞max|z|=1|(n+1)−1/2|Pn(z)|−1|=0。证明了Saffari(1991)的猜想:当n→∞时,∑k=0nak,nan−k,n=o(n),即多项式Pn(z)及其“共轭倒数”Pn * (z)=∑k=0nan−k,nzk成为“近正交”。为此,我们使用了[3]的结果,其中(以及[5])我们研究了超平面多项式的结构并证明了Saffari的几个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信