Plasma Nitriding of an Air-Hardening Medium Manganese Forging Steel

IF 0.3 Q4 THERMODYNAMICS
A. Gramlich, M. Auger, S. Richter
{"title":"Plasma Nitriding of an Air-Hardening Medium Manganese Forging Steel","authors":"A. Gramlich, M. Auger, S. Richter","doi":"10.1515/htm-2022-1017","DOIUrl":null,"url":null,"abstract":"Abstract The impact of plasma nitriding on the microstructure and the hardness of a recently developed 4 wt.-% medium manganese steel are presented. In contrast to standard quench and tempering steels, the investigated material achieves its martensitic microstructure by air-cooling from the forging heat, which enables the reduction of the carbon footprint of the forged components. The influence of nitriding on this grade of steel has not been investigated so far, but fundamental differences in comparison to standard nitriding steels are expected due to the increased manganese concentration. To address this issue, nitriding treatments with different temperatures (350 °C, 580 °C and 650 °C) have been performed, followed by examinations of the microstructure, the phase composition, the obtained hardness profiles and the tensile properties of the bulk material after nitriding, accompanied by thermodynamic equilibrium calculations. It is demonstrated that after nitriding at 580 °C similar hardness profiles like standard nitriding steels are achieved, with a shorter process as austenitization and hardening were omitted, reaching a hardness of approximately 950 HV0.1. Furthermore, it was demonstrated that austenite can be stabilized by manganese and nitrogen partitioning to room temperature during nitriding in the intercritical phase region.","PeriodicalId":44294,"journal":{"name":"HTM-Journal of Heat Treatment and Materials","volume":"209 1","pages":"298 - 315"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HTM-Journal of Heat Treatment and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/htm-2022-1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The impact of plasma nitriding on the microstructure and the hardness of a recently developed 4 wt.-% medium manganese steel are presented. In contrast to standard quench and tempering steels, the investigated material achieves its martensitic microstructure by air-cooling from the forging heat, which enables the reduction of the carbon footprint of the forged components. The influence of nitriding on this grade of steel has not been investigated so far, but fundamental differences in comparison to standard nitriding steels are expected due to the increased manganese concentration. To address this issue, nitriding treatments with different temperatures (350 °C, 580 °C and 650 °C) have been performed, followed by examinations of the microstructure, the phase composition, the obtained hardness profiles and the tensile properties of the bulk material after nitriding, accompanied by thermodynamic equilibrium calculations. It is demonstrated that after nitriding at 580 °C similar hardness profiles like standard nitriding steels are achieved, with a shorter process as austenitization and hardening were omitted, reaching a hardness of approximately 950 HV0.1. Furthermore, it was demonstrated that austenite can be stabilized by manganese and nitrogen partitioning to room temperature during nitriding in the intercritical phase region.
一种空气硬化介质锰锻钢的等离子体氮化
摘要:介绍了等离子体渗氮对一种新研制的4wt -%中锰钢组织和硬度的影响。与标准淬火和回火钢相比,所研究的材料通过锻造热的空气冷却来实现马氏体微观结构,这可以减少锻造部件的碳足迹。到目前为止,氮化对该等级钢的影响尚未研究,但由于锰浓度的增加,预计与标准氮化钢相比存在根本差异。为了解决这一问题,进行了不同温度(350°C、580°C和650°C)的渗氮处理,然后对渗氮后的大块材料的显微组织、相组成、硬度分布和拉伸性能进行了检查,并进行了热力学平衡计算。结果表明,在580°C渗氮后,其硬度曲线与标准渗氮钢相似,且由于省略了奥氏体化和硬化,过程较短,硬度约为950 HV0.1。此外,在临界相间区氮化过程中,锰氮向室温的分配可以稳定奥氏体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
33.30%
发文量
43
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信