F. Pennoni, F. Bartolucci, Gianfranco Forte, Ferdinando Ametrano
{"title":"Exploring the dependencies among main cryptocurrency log‐returns: A hidden Markov model","authors":"F. Pennoni, F. Bartolucci, Gianfranco Forte, Ferdinando Ametrano","doi":"10.1111/ecno.12193","DOIUrl":null,"url":null,"abstract":"A multivariate hidden Markov model is proposed to explain the price evolution of Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin Cash. The observed daily log-returns of these five major cryptocurrencies are modeled jointly. They are assumed to be correlated according to a variance-covariance matrix conditionally on a latent Markov process having a finite number of states. For the purpose of comparing states according to their volatility, we estimate specific variance-covariance matrix varying across states. Maximum likelihood estimation of the model parameters is carried out by the Expectation-Maximization algorithm. The hidden states represent different phases of the market identified through the estimated expected values and volatility of the log-returns. We reach interesting results in detecting these phases of the market and the implied transition dynamics. We also find evidence of structural medium term trend in the correlations of Bitcoin with the other cryptocurrencies.","PeriodicalId":44298,"journal":{"name":"Economic Notes","volume":"28 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ecno.12193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 3
Abstract
A multivariate hidden Markov model is proposed to explain the price evolution of Bitcoin, Ethereum, Ripple, Litecoin, and Bitcoin Cash. The observed daily log-returns of these five major cryptocurrencies are modeled jointly. They are assumed to be correlated according to a variance-covariance matrix conditionally on a latent Markov process having a finite number of states. For the purpose of comparing states according to their volatility, we estimate specific variance-covariance matrix varying across states. Maximum likelihood estimation of the model parameters is carried out by the Expectation-Maximization algorithm. The hidden states represent different phases of the market identified through the estimated expected values and volatility of the log-returns. We reach interesting results in detecting these phases of the market and the implied transition dynamics. We also find evidence of structural medium term trend in the correlations of Bitcoin with the other cryptocurrencies.
期刊介绍:
With articles that deal with the latest issues in banking, finance and monetary economics internationally, Economic Notes is an essential resource for anyone in the industry, helping you keep abreast of the latest developments in the field. Articles are written by top economists and executives working in financial institutions, firms and the public sector.