Organisational project evaluation via machine learning techniques: an exploration

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Alon Yaakobi, M. Goresh, Iris Reychav, R. McHaney, Lin Zhu, Hanoch Sapoznikov, Yuval Lib
{"title":"Organisational project evaluation via machine learning techniques: an exploration","authors":"Alon Yaakobi, M. Goresh, Iris Reychav, R. McHaney, Lin Zhu, Hanoch Sapoznikov, Yuval Lib","doi":"10.1080/2573234X.2019.1675478","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study explores ways an organisation can save time; review all proposed innovative, internal ideas; and, identify relevant start-up companies able to bring these ideas to fruition within a knowledge management framework. It uses text-mining techniques, including Python for data extraction and manipulation and topic modelling with Latent Dirichlet Allocation and Jaccard similarity indexes as a basis for evaluation of potentially valuable project ideas. Results show that internal organisational project ideas can be automatically matched with external data regarding potential implementation partners using big data knowledge management approaches. This ensures internal ideas are not overlooked or lost, but rather considered further so potentially profitable and viable opportunities are not missed. Increased use of big data to predict innovation and add value opens new channels to utilise text analysis in organisations and ensure internal innovation through a sustainable knowledge management approach.","PeriodicalId":36417,"journal":{"name":"Journal of Business Analytics","volume":"17 1","pages":"147 - 159"},"PeriodicalIF":1.7000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2573234X.2019.1675478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT This study explores ways an organisation can save time; review all proposed innovative, internal ideas; and, identify relevant start-up companies able to bring these ideas to fruition within a knowledge management framework. It uses text-mining techniques, including Python for data extraction and manipulation and topic modelling with Latent Dirichlet Allocation and Jaccard similarity indexes as a basis for evaluation of potentially valuable project ideas. Results show that internal organisational project ideas can be automatically matched with external data regarding potential implementation partners using big data knowledge management approaches. This ensures internal ideas are not overlooked or lost, but rather considered further so potentially profitable and viable opportunities are not missed. Increased use of big data to predict innovation and add value opens new channels to utilise text analysis in organisations and ensure internal innovation through a sustainable knowledge management approach.
通过机器学习技术进行组织项目评估:探索
本研究探讨了组织节省时间的方法;审核所有提出的创新的内部想法;并且,确定相关的初创公司能够在知识管理框架内实现这些想法。它使用文本挖掘技术,包括用于数据提取和操作的Python,以及使用Latent Dirichlet Allocation和Jaccard相似性指数作为评估潜在有价值的项目想法的基础的主题建模。结果表明,使用大数据知识管理方法,内部组织项目想法可以与潜在实施伙伴的外部数据自动匹配。这确保了内部想法不会被忽视或丢失,而是进一步考虑,从而不会错过潜在的盈利和可行的机会。越来越多地使用大数据来预测创新和增加价值,为组织中利用文本分析开辟了新的渠道,并通过可持续的知识管理方法确保内部创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Business Analytics
Journal of Business Analytics Business, Management and Accounting-Management Information Systems
CiteScore
2.50
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信