Stability of Uncertain Equations of Volterra-Levin type and an Uncertain Delay Differential Equation Via Fixed Point Method‎

V. Roomi, Hamid Reza Ahmadi̇
{"title":"Stability of Uncertain Equations of Volterra-Levin type and an Uncertain Delay Differential Equation Via Fixed Point Method‎","authors":"V. Roomi, Hamid Reza Ahmadi̇","doi":"10.31197/atnaa.1212287","DOIUrl":null,"url":null,"abstract":"‎In this work four uncertain delay differential equations of Volterra-Levin type will be considered‎. ‎Applying suitable contraction mapping and fixed point method‎, ‎the stability of the equations will be studied‎. ‎It will be shown that the solutions are bounded and‎, ‎with additional condition‎, ‎the solutions tend to zero‎. ‎Also‎, ‎a necessary and sufficient condition for the asymptotic stability of the solutions of an uncertain differential equation will be presented‎.","PeriodicalId":7440,"journal":{"name":"Advances in the Theory of Nonlinear Analysis and its Application","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in the Theory of Nonlinear Analysis and its Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31197/atnaa.1212287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

‎In this work four uncertain delay differential equations of Volterra-Levin type will be considered‎. ‎Applying suitable contraction mapping and fixed point method‎, ‎the stability of the equations will be studied‎. ‎It will be shown that the solutions are bounded and‎, ‎with additional condition‎, ‎the solutions tend to zero‎. ‎Also‎, ‎a necessary and sufficient condition for the asymptotic stability of the solutions of an uncertain differential equation will be presented‎.
不动点法研究不确定Volterra-Levin型方程和不确定时滞微分方程的稳定性
在这项工作中,将考虑四个不确定的Volterra-Levin型延迟微分方程。应用适当的收缩映射和不动点法,研究了方程的稳定性。将证明解是有界的,并且在附加条件下解趋于零。同时,给出了一类不确定微分方程解渐近稳定的一个充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信