Exact value of integrals involving product of sine or cosine function

Q4 Mathematics
Ratinan Boonklurb, Atiratch Laoharenoo
{"title":"Exact value of integrals involving product of sine or cosine function","authors":"Ratinan Boonklurb, Atiratch Laoharenoo","doi":"10.53733/235","DOIUrl":null,"url":null,"abstract":"By considering the number of all choices of signs $+$ and $-$ such that $\\pm \\alpha_1 \\pm \\alpha_2 \\pm \\alpha_3 \\cdots \\pm \\alpha_n = 0$ and the number of sign $-$ appeared therein, this paper can give the exact value of $\\int_{0}^{2\\pi} \\prod_{k=1}^{n} \\sin (\\alpha_k x) dx$. In addition, without using the Fourier transformation technique, we can also find the exact value of $\\int_{0}^{\\infty}\\frac{(\\cos\\alpha x - \\cos\\beta x)^p}{x^q} dx$. These two integrals are motivated by the work of Andrican and Bragdasar in 2021, Andria and Tomescu in 2002, and Borwein and Borwein in 2001, respectively.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

By considering the number of all choices of signs $+$ and $-$ such that $\pm \alpha_1 \pm \alpha_2 \pm \alpha_3 \cdots \pm \alpha_n = 0$ and the number of sign $-$ appeared therein, this paper can give the exact value of $\int_{0}^{2\pi} \prod_{k=1}^{n} \sin (\alpha_k x) dx$. In addition, without using the Fourier transformation technique, we can also find the exact value of $\int_{0}^{\infty}\frac{(\cos\alpha x - \cos\beta x)^p}{x^q} dx$. These two integrals are motivated by the work of Andrican and Bragdasar in 2021, Andria and Tomescu in 2002, and Borwein and Borwein in 2001, respectively.
包含正弦或余弦函数积的积分的精确值
考虑所有选择的符号$+$和$-$的个数,其中$\pm \alpha_1 \pm \alpha_2 \pm \alpha_3 \cdots \pm \alpha_n = 0$和出现的符号$-$的个数,本文可以给出$\int_{0}^{2\pi} \prod_{k=1}^{n} \sin (\alpha_k x) dx$的准确值。另外,不使用傅里叶变换技术,也可以求出$\int_{0}^{\infty}\frac{(\cos\alpha x - \cos\beta x)^p}{x^q} dx$的准确值。这两个积分分别是由Andrican和Bragdasar(2021)、Andria和Tomescu(2002)以及Borwein和Borwein(2001)的工作推动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信