M. Jafarov, E. Nasirov, S. Jahangirova, R. Mammadov
{"title":"Nanostructured Cu2ZnSnS4 Thin Films on Porous-Si Wafer","authors":"M. Jafarov, E. Nasirov, S. Jahangirova, R. Mammadov","doi":"10.32732/JMA.2019.8.1.28","DOIUrl":null,"url":null,"abstract":" Nanostructure CZTS thin film was fabricated by electrodeposition technique. To manufacture the heterojunctions, p-type c-Si wafers of (100) orientation were used as a substrate. Before anodization, the surface of the c-Si substrates were etched in an aqueous solution of HF and further washed in distilled water (at temperature of 80°С and ethyl alcohol and then dried in air. The current-voltage characteristics of the CZTS /PS solar cell under dark conditions show that forward bias current variation approximately exponentially with voltage bias. The capacitance for Nano- CZTS /PS Solar Cell decreases with the increase of the reverse bias voltage and with the increasing of etching time of nPS layers. That heterojunctions demonstrate good photo-response in the wavelength range of 510 - 650 nm.","PeriodicalId":14116,"journal":{"name":"International Journal of Materials Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32732/JMA.2019.8.1.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Nanostructure CZTS thin film was fabricated by electrodeposition technique. To manufacture the heterojunctions, p-type c-Si wafers of (100) orientation were used as a substrate. Before anodization, the surface of the c-Si substrates were etched in an aqueous solution of HF and further washed in distilled water (at temperature of 80°С and ethyl alcohol and then dried in air. The current-voltage characteristics of the CZTS /PS solar cell under dark conditions show that forward bias current variation approximately exponentially with voltage bias. The capacitance for Nano- CZTS /PS Solar Cell decreases with the increase of the reverse bias voltage and with the increasing of etching time of nPS layers. That heterojunctions demonstrate good photo-response in the wavelength range of 510 - 650 nm.