Studies on the Water-Insoluble Enzyme

Hideo Suzuki, Y. Ozawa, H. Maeda
{"title":"Studies on the Water-Insoluble Enzyme","authors":"Hideo Suzuki, Y. Ozawa, H. Maeda","doi":"10.1080/00021369.1966.10858683","DOIUrl":null,"url":null,"abstract":"Water-insoluble yeast invertase was prepared by binding native invertase to DEAE-cellulose. Some characteristics of the bound invertase and the continuous hydrolysis of sucrose by use of it are described. The activity of bound invertase corresponded to about 1/2 at pH 3.4 when compared with the maximum activity of free form and it could hydrolyze sucrose into invert sugar perfectly. The apparent optimum pH of bound invertase was shifted toward acid pH by about 2 pH units in comparison with free invertase. Stability of bound invertase to temperature was slightly less in comparison with free invertase at pH 5.2. The continuous sucrose hydrolysis was carried out using bound invertase at pH 3.6 and it could be used about ten times until the hydrolysis ratio decreased to the half of the initial.","PeriodicalId":7729,"journal":{"name":"Agricultural and biological chemistry","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and biological chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00021369.1966.10858683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Water-insoluble yeast invertase was prepared by binding native invertase to DEAE-cellulose. Some characteristics of the bound invertase and the continuous hydrolysis of sucrose by use of it are described. The activity of bound invertase corresponded to about 1/2 at pH 3.4 when compared with the maximum activity of free form and it could hydrolyze sucrose into invert sugar perfectly. The apparent optimum pH of bound invertase was shifted toward acid pH by about 2 pH units in comparison with free invertase. Stability of bound invertase to temperature was slightly less in comparison with free invertase at pH 5.2. The continuous sucrose hydrolysis was carried out using bound invertase at pH 3.6 and it could be used about ten times until the hydrolysis ratio decreased to the half of the initial.
水不溶酶的研究
将天然转化酶与deae纤维素结合制备了不溶于水的酵母转化酶。介绍了结合型转化酶的一些特性以及利用它连续水解蔗糖的方法。在pH 3.4条件下,结合型转化酶的活性约为游离型酶的最大活性的1/2,能很好地将蔗糖水解成转化糖。与游离转化酶相比,结合转化酶的表观最佳pH向酸性pH偏移约2个pH单位。在pH 5.2时,结合型转化酶对温度的稳定性略低于游离型转化酶。在pH为3.6的条件下,用结合的转化酶进行连续的蔗糖水解,可以使用10次左右,直到水解比降低到初始的一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信