Alternative mutational architectures producing identical M -matrices can lead to different patterns of evolutionary divergence.

Daohan Jiang, Matt Pennell
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Alternative mutational architectures producing identical <ns0:math><ns0:mrow><ns0:mtext>M</ns0:mtext></ns0:mrow> </ns0:math> -matrices can lead to different patterns of evolutionary divergence.","authors":"Daohan Jiang, Matt Pennell","doi":"10.1101/2023.08.11.553044","DOIUrl":null,"url":null,"abstract":"<p><p>Explaining macroevolutionary divergence in light of population genetics requires understanding the extent to which the patterns of mutational input contribute to long-term trends. In the context of quantitative traits, mutational input is typically described by the mutational variance-covariance matrix, or the <math><mrow><mtext>M</mtext></mrow> </math> -matrix, which summarizes phenotypic variances and covariances introduced by new mutations per generation. However, as a summary statistic, the <math><mrow><mtext>M</mtext></mrow> </math> -matrix does not fully capture all the relevant information from the underlying mutational architecture, and there exist infinitely many possible underlying mutational architectures that give rise to the same <math><mrow><mtext>M</mtext></mrow> </math> -matrix. Using individual-based simulations, we demonstrate mutational architectures that produce the same <math><mrow><mtext>M</mtext></mrow> </math> -matrix can lead to different levels of constraint on evolution and result in difference in within-population genetic variance, between-population divergence, and rate of adaptation. In particular, the rate of adaptation and that of neutral evolution are both reduced when a greater proportion of loci are pleiotropic. Our results reveal that aspects of mutational input not reflected by the <math><mrow><mtext>M</mtext></mrow> </math> -matrix can have a profound impact on long-term evolution, and suggest it is important to take them into account in order to connect patterns of long-term phenotypic evolution to underlying microevolutionary mechanisms.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642737/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.08.11.553044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Explaining macroevolutionary divergence in light of population genetics requires understanding the extent to which the patterns of mutational input contribute to long-term trends. In the context of quantitative traits, mutational input is typically described by the mutational variance-covariance matrix, or the M -matrix, which summarizes phenotypic variances and covariances introduced by new mutations per generation. However, as a summary statistic, the M -matrix does not fully capture all the relevant information from the underlying mutational architecture, and there exist infinitely many possible underlying mutational architectures that give rise to the same M -matrix. Using individual-based simulations, we demonstrate mutational architectures that produce the same M -matrix can lead to different levels of constraint on evolution and result in difference in within-population genetic variance, between-population divergence, and rate of adaptation. In particular, the rate of adaptation and that of neutral evolution are both reduced when a greater proportion of loci are pleiotropic. Our results reveal that aspects of mutational input not reflected by the M -matrix can have a profound impact on long-term evolution, and suggest it is important to take them into account in order to connect patterns of long-term phenotypic evolution to underlying microevolutionary mechanisms.

产生相同m矩阵的不同突变结构可能导致不同的进化分化模式。
从种群遗传学的角度解释宏观进化差异,需要理解突变输入模式对长期趋势的影响程度。在数量性状的背景下,突变输入通常用突变方差-协方差矩阵或M矩阵来描述,该矩阵总结了每一代新突变引入的表型方差和协方差。然而,作为汇总统计,M -矩阵并不能完全捕获底层突变体系结构的所有相关信息,并且存在无限多个可能的底层突变体系结构,它们产生相同的M -矩阵。通过基于个体的模拟,我们证明了产生相同M -矩阵的突变结构可以导致不同程度的进化约束,并导致种群内遗传变异、种群间差异和适应速度的差异。特别是,当基因座多效性比例较大时,适应速率和中性进化速率均降低。我们的研究结果表明,未被M矩阵反映的突变输入方面可能对长期进化产生深远的影响,并表明为了将长期表型进化模式与潜在的微进化机制联系起来,考虑它们是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信