StopWatch: A Cloud Architecture for Timing Channel Mitigation

Q Engineering
Peng Li, Debin Gao, M. Reiter
{"title":"StopWatch: A Cloud Architecture for Timing Channel Mitigation","authors":"Peng Li, Debin Gao, M. Reiter","doi":"10.1145/2670940","DOIUrl":null,"url":null,"abstract":"This article presents StopWatch, a system that defends against timing-based side-channel attacks that arise from coresidency of victims and attackers in infrastructure-as-a-service clouds. StopWatch triplicates each cloud-resident guest virtual machine (VM) and places replicas so that the three replicas of a guest VM are coresident with nonoverlapping sets of (replicas of) other VMs. StopWatch uses the timing of I/O events at a VM’s replicas collectively to determine the timings observed by each one or by an external observer, so that observable timing behaviors are similarly likely in the absence of any other individual, coresident VMs. We detail the design and implementation of StopWatch in Xen, evaluate the factors that influence its performance, demonstrate its advantages relative to alternative defenses against timing side channels with commodity hardware, and address the problem of placing VM replicas in a cloud under the constraints of StopWatch so as to still enable adequate cloud utilization.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2670940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 44

Abstract

This article presents StopWatch, a system that defends against timing-based side-channel attacks that arise from coresidency of victims and attackers in infrastructure-as-a-service clouds. StopWatch triplicates each cloud-resident guest virtual machine (VM) and places replicas so that the three replicas of a guest VM are coresident with nonoverlapping sets of (replicas of) other VMs. StopWatch uses the timing of I/O events at a VM’s replicas collectively to determine the timings observed by each one or by an external observer, so that observable timing behaviors are similarly likely in the absence of any other individual, coresident VMs. We detail the design and implementation of StopWatch in Xen, evaluate the factors that influence its performance, demonstrate its advantages relative to alternative defenses against timing side channels with commodity hardware, and address the problem of placing VM replicas in a cloud under the constraints of StopWatch so as to still enable adequate cloud utilization.
秒表:用于时间通道缓解的云架构
本文介绍了StopWatch,这是一种防御基于时间的侧信道攻击的系统,这种攻击是由基础设施即服务云中的受害者和攻击者共存引起的。StopWatch将每个驻留在云上的客户虚拟机(VM)复制三份,并放置副本,以便一个客户虚拟机的三个副本与其他虚拟机的不重叠的副本集共存。StopWatch使用VM副本上的I/O事件的时间来确定每个副本或外部观察者观察到的时间,因此在没有任何其他单独的、驻留的VM的情况下,观察到的计时行为是类似的。我们详细介绍了StopWatch在Xen中的设计和实现,评估了影响其性能的因素,展示了其相对于使用商用硬件的定时侧信道的替代防御的优势,并解决了在StopWatch的约束下将VM副本放置在云中的问题,以便仍然能够充分利用云。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Information and System Security
ACM Transactions on Information and System Security 工程技术-计算机:信息系统
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
3.3 months
期刊介绍: ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信