{"title":"Applications to Quantum Codes","authors":"Ferhat Kuruz, Mustafa Sarı, M. Köroğlu","doi":"10.26421/qic22.5-6-4","DOIUrl":null,"url":null,"abstract":"Due to their rich algebraic structure, cyclic codes have a great deal of significance amongst linear codes. Duadic codes are the generalization of the quadratic residue codes, a special case of cyclic codes. The $m$-adic residue codes are the generalization of the duadic codes. The aim of this paper is to study the structure of the $m$-adic residue codes over the quotient ring $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$. We determine the idempotent generators of the $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$. We obtain some parameters of optimal $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$ with respect to Griesmer bound for rings. Furthermore, we derive a condition for $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$ to contain their dual. By making use of a preserving-orthogonality Gray map, we construct a family of quantum error correcting codes from the Gray images of dual-containing $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$ and give some examples to illustrate our findings.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"45 1","pages":"427-439"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.5-6-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their rich algebraic structure, cyclic codes have a great deal of significance amongst linear codes. Duadic codes are the generalization of the quadratic residue codes, a special case of cyclic codes. The $m$-adic residue codes are the generalization of the duadic codes. The aim of this paper is to study the structure of the $m$-adic residue codes over the quotient ring $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We determine the idempotent generators of the $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We obtain some parameters of optimal $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ with respect to Griesmer bound for rings. Furthermore, we derive a condition for $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ to contain their dual. By making use of a preserving-orthogonality Gray map, we construct a family of quantum error correcting codes from the Gray images of dual-containing $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ and give some examples to illustrate our findings.