Applications to Quantum Codes

Ferhat Kuruz, Mustafa Sarı, M. Köroğlu
{"title":"Applications to Quantum Codes","authors":"Ferhat Kuruz, Mustafa Sarı, M. Köroğlu","doi":"10.26421/qic22.5-6-4","DOIUrl":null,"url":null,"abstract":"Due to their rich algebraic structure, cyclic codes have a great deal of significance amongst linear codes. Duadic codes are the generalization of the quadratic residue codes, a special case of cyclic codes. The $m$-adic residue codes are the generalization of the duadic codes. The aim of this paper is to study the structure of the $m$-adic residue codes over the quotient ring $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$. We determine the idempotent generators of the $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$. We obtain some parameters of optimal $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$ with respect to Griesmer bound for rings. Furthermore, we derive a condition for $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$ to contain their dual. By making use of a preserving-orthogonality Gray map, we construct a family of quantum error correcting codes from the Gray images of dual-containing $m$-adic residue codes over $\\frac{{{\\mathbb{F}_q}\\left[ v \\right]}}{{\\left\\langle {{v^s} - v} \\right\\rangle }}$ and give some examples to illustrate our findings.","PeriodicalId":20904,"journal":{"name":"Quantum Inf. Comput.","volume":"45 1","pages":"427-439"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26421/qic22.5-6-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to their rich algebraic structure, cyclic codes have a great deal of significance amongst linear codes. Duadic codes are the generalization of the quadratic residue codes, a special case of cyclic codes. The $m$-adic residue codes are the generalization of the duadic codes. The aim of this paper is to study the structure of the $m$-adic residue codes over the quotient ring $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We determine the idempotent generators of the $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$. We obtain some parameters of optimal $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ with respect to Griesmer bound for rings. Furthermore, we derive a condition for $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ to contain their dual. By making use of a preserving-orthogonality Gray map, we construct a family of quantum error correcting codes from the Gray images of dual-containing $m$-adic residue codes over $\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$ and give some examples to illustrate our findings.
量子密码的应用
循环码由于其丰富的代数结构,在线性码中具有重要的意义。二元码是二次剩余码的推广,是循环码的一种特例。$m$进数剩余码是对二进码的推广。本文的目的是研究商环$\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$上的$m$ -进剩余码的结构。我们确定了$\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$上$m$ -进剩码的幂等生成器。对于环的Griesmer界,我们得到了$\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$上最优$m$ -进剩余码的一些参数。此外,我们推导了$\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$上的$m$ -adic剩余码包含其对偶的条件。我们利用保持正交的灰度映射,从$\frac{{{\mathbb{F}_q}\left[ v \right]}}{{\left\langle {{v^s} - v} \right\rangle }}$上的双包含$m$ -adic残差码的灰度图像中构造了一组量子纠错码,并给出了一些例子来说明我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信