{"title":"On The Maximum Cliques Of The Subgraphs Induced By Binary Constant Weight Codes In Powers Of Hypercubes","authors":"Juanjuan Shi, Yongfang Kou, Yulan Hu, Weihua Yang","doi":"10.1093/comjnl/bxac103","DOIUrl":null,"url":null,"abstract":"\n The problem of finding the maximum independent sets (or maximum cliques) of a given graph is fundamental in graph theory and is also one of the most important in terms of the application of graph theory. Let $A(n,d,w)$ be the size of the maximum independent set of $Q_{n}^{(d-1,w)}$, which is the induced subgraph of points of weight $w$ of the $d-1^{th}$-power of $n$-dimensional hypercubes. In order to further understand and study the dependent set of $Q_{n}^{(d-1,w)}$, we explore its clique number and the structure of the maximum clique. This paper obtains the clique number and the structure of the maximum clique of $Q_{n}^{(d-1,w)}$ for $5\\leq d\\leq 6$. Moreover, the characterizations for $A(n,d,w)=2$ and $3$ are also given.","PeriodicalId":21872,"journal":{"name":"South Afr. Comput. J.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South Afr. Comput. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxac103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The problem of finding the maximum independent sets (or maximum cliques) of a given graph is fundamental in graph theory and is also one of the most important in terms of the application of graph theory. Let $A(n,d,w)$ be the size of the maximum independent set of $Q_{n}^{(d-1,w)}$, which is the induced subgraph of points of weight $w$ of the $d-1^{th}$-power of $n$-dimensional hypercubes. In order to further understand and study the dependent set of $Q_{n}^{(d-1,w)}$, we explore its clique number and the structure of the maximum clique. This paper obtains the clique number and the structure of the maximum clique of $Q_{n}^{(d-1,w)}$ for $5\leq d\leq 6$. Moreover, the characterizations for $A(n,d,w)=2$ and $3$ are also given.