{"title":"The simultaneous conjugacy problem in the symmetric group","authors":"A. Brodnik, A. Malnic, Rok Požar","doi":"10.1090/MCOM/3637","DOIUrl":null,"url":null,"abstract":"The transitive simultaneous conjugacy problem asks whether there exists a permutation $\\tau \\in S_n$ such that $b_j = \\tau^{-1} a_j \\tau$ holds for all $j = 1,2, \\ldots, d$, where $a_1, a_2, \\ldots, a_d$ and $b_1, b_2, \\ldots, b_d$ are given sequences of $d$ permutations in $S_n$, each of which generates a transitive subgroup of $S_n$. As from mid 70' it has been known that the problem can be solved in $O(dn^2)$ time. An algorithm with running time $O(dn \\log(dn))$, proposed in late 80', does not work correctly on all input data. In this paper we solve the transitive simultaneous conjugacy problem in $O(n^2 \\log d / \\log n + dn\\log n)$ time and $O(n^{3/ 2} + dn)$ space. Experimental evaluation on random instances shows that the expected running time of our algorithm is considerably better, perhaps even nearly linear in $n$ at given $d$.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"30 1","pages":"2977-2995"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/MCOM/3637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The transitive simultaneous conjugacy problem asks whether there exists a permutation $\tau \in S_n$ such that $b_j = \tau^{-1} a_j \tau$ holds for all $j = 1,2, \ldots, d$, where $a_1, a_2, \ldots, a_d$ and $b_1, b_2, \ldots, b_d$ are given sequences of $d$ permutations in $S_n$, each of which generates a transitive subgroup of $S_n$. As from mid 70' it has been known that the problem can be solved in $O(dn^2)$ time. An algorithm with running time $O(dn \log(dn))$, proposed in late 80', does not work correctly on all input data. In this paper we solve the transitive simultaneous conjugacy problem in $O(n^2 \log d / \log n + dn\log n)$ time and $O(n^{3/ 2} + dn)$ space. Experimental evaluation on random instances shows that the expected running time of our algorithm is considerably better, perhaps even nearly linear in $n$ at given $d$.