Búsqueda de la estructura óptima de redes neurales con Algoritmos Genéticos y Simulated Annealing. Verificación con el benchmark PROBEN1

IF 3.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Francisco Yepes Barrera
{"title":"Búsqueda de la estructura óptima de redes neurales con Algoritmos Genéticos y Simulated Annealing. Verificación con el benchmark PROBEN1","authors":"Francisco Yepes Barrera","doi":"10.4114/IA.V11I34.908","DOIUrl":null,"url":null,"abstract":"Este articulo describe el uso de algoritmos geneticos (AG) y simulated annealing (SA) en la busqueda de configuraciones optimas de redes neurales artificiales, dentro de una arquitectura software, TSAGANN. El estudio comparativo ha sido realizado con benchmarks consolidados y es ilustrado en detalle. El analisis estadistico de los resultados indica que SA es tan eficiente como AG para este tipo de problemas, permitiendo incluso realizar exploraciones en el espacio del problema con un menor numero de evaluaciones de las usadas por el AG para obtener resultados comparables.","PeriodicalId":43470,"journal":{"name":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2007-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artificial-Iberoamerical Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/IA.V11I34.908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Este articulo describe el uso de algoritmos geneticos (AG) y simulated annealing (SA) en la busqueda de configuraciones optimas de redes neurales artificiales, dentro de una arquitectura software, TSAGANN. El estudio comparativo ha sido realizado con benchmarks consolidados y es ilustrado en detalle. El analisis estadistico de los resultados indica que SA es tan eficiente como AG para este tipo de problemas, permitiendo incluso realizar exploraciones en el espacio del problema con un menor numero de evaluaciones de las usadas por el AG para obtener resultados comparables.
利用遗传算法和模拟退火寻找神经网络的最优结构。使用PROBEN1基准测试进行验证
本文描述了在TSAGANN软件架构中使用遗传算法(AG)和模拟退火算法(SA)来搜索人工神经网络的最佳配置。比较研究是根据综合基准进行的,并详细说明。结果的统计分析表明,SA在这类问题上与AG一样有效,甚至允许在问题空间中进行探索,与AG用于获得可比结果的评估数量相比,允许更少的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
15
审稿时长
8 weeks
期刊介绍: Inteligencia Artificial is a quarterly journal promoted and sponsored by the Spanish Association for Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. The journal publishes high-quality original research papers reporting theoretical or applied advances in all branches of Artificial Intelligence. Particularly, the Journal welcomes: New approaches, techniques or methods to solve AI problems, which should include demonstrations of effectiveness oor improvement over existing methods. These demonstrations must be reproducible. Integration of different technologies or approaches to solve wide problems or belonging different areas. AI applications, which should describe in detail the problem or the scenario and the proposed solution, emphasizing its novelty and present a evaluation of the AI techniques that are applied. In addition to rapid publication and dissemination of unsolicited contributions, the journal is also committed to producing monographs, surveys or special issues on topics, methods or techniques of special relevance to the AI community. Inteligencia Artificial welcomes submissions written in English, Spaninsh or Portuguese. But at least, a title, summary and keywords in english should be included in each contribution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信