Analysis of pairing phase transition in Sn-isotopes within semiclassical approach

Saniya Monga, H. Kaur, S. Jain
{"title":"Analysis of pairing phase transition in Sn-isotopes within semiclassical approach","authors":"Saniya Monga, H. Kaur, S. Jain","doi":"10.1142/s0218301320500718","DOIUrl":null,"url":null,"abstract":"We demonstrate that pairing phase transition (superfluid to normal) can be described quite generally in terms of the thermodynamical properties after verifying the obtained level densities with the available experimental data for [Formula: see text]- isotopes. Periodic-orbit theory conveniently connects the oscillatory part of level density to the underlying classical periodic orbits and hence, leads to the shell effects in the single-particle level density. Such methods incorporated with pairing effects can be used effectively to study the phase transitions in [Formula: see text]-isotopes. In addition to this, an interplay between pairing correlations and the shell effects has been understood by analyzing the results obtained for the critical temperatures and shell structure energies for [Formula: see text] isotopes. A relation between variation in critical temperatures caused by shell effects and the shell structure energies determined with and without pairing effects has been established. Furthermore, the systematics of the heat capacity (giving a clear signature of pairing phase transition) as function of temperature for these nuclei are investigated as well.","PeriodicalId":14032,"journal":{"name":"International Journal of Modern Physics E-nuclear Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics E-nuclear Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218301320500718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We demonstrate that pairing phase transition (superfluid to normal) can be described quite generally in terms of the thermodynamical properties after verifying the obtained level densities with the available experimental data for [Formula: see text]- isotopes. Periodic-orbit theory conveniently connects the oscillatory part of level density to the underlying classical periodic orbits and hence, leads to the shell effects in the single-particle level density. Such methods incorporated with pairing effects can be used effectively to study the phase transitions in [Formula: see text]-isotopes. In addition to this, an interplay between pairing correlations and the shell effects has been understood by analyzing the results obtained for the critical temperatures and shell structure energies for [Formula: see text] isotopes. A relation between variation in critical temperatures caused by shell effects and the shell structure energies determined with and without pairing effects has been established. Furthermore, the systematics of the heat capacity (giving a clear signature of pairing phase transition) as function of temperature for these nuclei are investigated as well.
用半经典方法分析sn同位素的配对相变
我们证明配对相变(超流到正态)在用现有的实验数据验证得到的能级密度后,可以相当普遍地用热力学性质来描述[公式:见文本]-同位素。周期轨道理论方便地将能级密度的振荡部分与底层的经典周期轨道联系起来,从而导致单粒子能级密度中的壳层效应。这种结合配对效应的方法可以有效地用于研究[公式:见文本]-同位素中的相变。除此之外,通过分析[公式:见文本]同位素的临界温度和壳层结构能得到的结果,还了解了配对相关性和壳层效应之间的相互作用。建立了由壳层效应引起的临界温度变化与有无配对效应确定的壳层结构能之间的关系。此外,还研究了这些核的热容(给出了配对相变的明确标志)作为温度函数的系统分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信