Non-Imaginary unit Circle and Distribution Odd Natural Numbers

Q3 Mathematics
Shaimaa said soltan
{"title":"Non-Imaginary unit Circle and Distribution Odd Natural Numbers","authors":"Shaimaa said soltan","doi":"10.5539/jmr.v15n3p25","DOIUrl":null,"url":null,"abstract":"This paper introduces a non-Imaginary unit circle partitioning as proof for the distribution of odd natural numbers in relation to an imaginary unit circle in a complex plane. First, we will introduce the concept of a non-imaginary unit circle and its relation to an imaginary unit circle in a complex plane. Then we will go through some examples to prove that for any N odd natural number at N/2, we only have the imaginary part for any complex number on the complex plane if we use our technique of portioning for the non-imaginary unit circle.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"129 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n3p25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a non-Imaginary unit circle partitioning as proof for the distribution of odd natural numbers in relation to an imaginary unit circle in a complex plane. First, we will introduce the concept of a non-imaginary unit circle and its relation to an imaginary unit circle in a complex plane. Then we will go through some examples to prove that for any N odd natural number at N/2, we only have the imaginary part for any complex number on the complex plane if we use our technique of portioning for the non-imaginary unit circle.
非虚单位圆与奇自然数分布
本文介绍了复平面上奇数在虚单位圆上的分布的非虚单位圆划分的证明。首先,我们将介绍非虚单位圆的概念及其与复平面上虚单位圆的关系。然后我们将通过一些例子来证明对于任意N个N/2的奇数,在复平面上对于任意复数,如果我们使用分割非虚数单位圆的技巧,我们只有虚部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信