S. J. Pendleton, A. Kuthi, Hao Chen Martin A. Gundersen, P. Muggli
{"title":"Pulsed high-density hydrogen plasma source for wakefield accelerator applications","authors":"S. J. Pendleton, A. Kuthi, Hao Chen Martin A. Gundersen, P. Muggli","doi":"10.1109/PLASMA.2013.6635127","DOIUrl":null,"url":null,"abstract":"Summary form only given. Reported are new results for pulsed power-driven hollow cathode hydrogen-based plasma source development, needed for plasma-based accelerator experiments, including particle-beam-driven plasma wakefield accelerators. Capillary sources have been constructed of transparent cylindrical borosilicate glass tubes in lengths up to 15 cm and inner diameters up to 2 mm. The plasma discharge is presently driven by a thyratron-switched pulse forming network and step-up transformer. Uniform plasma densities of over 1018 cm-3 have been demonstrated, and the length and density can be readily varied for optimal performance. The pulsed power requirements for increasing capillary size and optimization of solid-state pulsed power switching for the purpose of increased flexibility, energy minimization and long life will be discussed. Time dependence of plasma density, and other variations of the device parameters for fine-tuning of accelerator applications is analyzed and discussed, including the use of this discharge at accelerator facilities for plasma wakefield experiments.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"9 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6635127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Summary form only given. Reported are new results for pulsed power-driven hollow cathode hydrogen-based plasma source development, needed for plasma-based accelerator experiments, including particle-beam-driven plasma wakefield accelerators. Capillary sources have been constructed of transparent cylindrical borosilicate glass tubes in lengths up to 15 cm and inner diameters up to 2 mm. The plasma discharge is presently driven by a thyratron-switched pulse forming network and step-up transformer. Uniform plasma densities of over 1018 cm-3 have been demonstrated, and the length and density can be readily varied for optimal performance. The pulsed power requirements for increasing capillary size and optimization of solid-state pulsed power switching for the purpose of increased flexibility, energy minimization and long life will be discussed. Time dependence of plasma density, and other variations of the device parameters for fine-tuning of accelerator applications is analyzed and discussed, including the use of this discharge at accelerator facilities for plasma wakefield experiments.