Decentralized Information Filtering Under Skew-Laplace Noise

J. Vilà‐Valls, F. Vincent, P. Closas
{"title":"Decentralized Information Filtering Under Skew-Laplace Noise","authors":"J. Vilà‐Valls, F. Vincent, P. Closas","doi":"10.1109/IEEECONF44664.2019.9049032","DOIUrl":null,"url":null,"abstract":"Localization in large sensor networks requires decentralized computationally efficient filtering solutions. To model challenging indoor propagation conditions, including non-line-of-sight conditions and other channel variations, it may be necessary to consider non-Gaussian distributed errors. In this case, Gaussian filters cannot be considered as is and particle filters do not meet the system requirements on computational cost and/or available memory. In this article we explore decentralized Gaussian information filtering strategies under skew-Laplace errors, exploiting the hierarchically Gaussian formulation of such distribution. An illustrative example is considered to show the performance and support the discussion.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"2 1","pages":"291-295"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Localization in large sensor networks requires decentralized computationally efficient filtering solutions. To model challenging indoor propagation conditions, including non-line-of-sight conditions and other channel variations, it may be necessary to consider non-Gaussian distributed errors. In this case, Gaussian filters cannot be considered as is and particle filters do not meet the system requirements on computational cost and/or available memory. In this article we explore decentralized Gaussian information filtering strategies under skew-Laplace errors, exploiting the hierarchically Gaussian formulation of such distribution. An illustrative example is considered to show the performance and support the discussion.
斜拉普拉斯噪声下的分散信息滤波
大型传感器网络中的定位需要分散的高效计算滤波解决方案。为了模拟具有挑战性的室内传播条件,包括非视距条件和其他信道变化,可能有必要考虑非高斯分布误差。在这种情况下,高斯滤波器不能被视为是和粒子滤波器不满足系统的计算成本和/或可用内存的要求。在本文中,我们利用这种分布的层次高斯公式,探讨了偏拉普拉斯误差下的分散高斯信息过滤策略。通过一个实例来说明其性能并支持讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信