{"title":"Operator level limit of the circular Jacobi β-ensemble","authors":"Yun Li, B. Valkó","doi":"10.1142/s2010326322500435","DOIUrl":null,"url":null,"abstract":"We prove an operator level limit for the circular Jacobi β-ensemble. As a result, we characterize the counting function of the limit point process via coupled systems of stochastic differential equations. We also show that the normalized characteristic polynomials converge to a random analytic function, which we characterize via the joint distribution of its Taylor coefficients at zero and as the solution of a stochastic differential equation system. We also provide analogous results for the real orthogonal β-ensemble.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326322500435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We prove an operator level limit for the circular Jacobi β-ensemble. As a result, we characterize the counting function of the limit point process via coupled systems of stochastic differential equations. We also show that the normalized characteristic polynomials converge to a random analytic function, which we characterize via the joint distribution of its Taylor coefficients at zero and as the solution of a stochastic differential equation system. We also provide analogous results for the real orthogonal β-ensemble.