A new nonlinear constitutive model of CSG

IF 0.9 Q4 ENGINEERING, CIVIL
X. Feng, Fangfang Zhang, Lixia Guo, L. Zhong
{"title":"A new nonlinear constitutive model of CSG","authors":"X. Feng, Fangfang Zhang, Lixia Guo, L. Zhong","doi":"10.1080/13287982.2021.1998995","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cemented sand and gravel (CSG) is a kind of green building material that has emerged in recent years. The cement content has a great impact on the deformation characteristics of CSG, but the current constitutive models cannot reflect this problem. Based on the previous research results, this paper depicted the volume strain and shear strain of CSG, established a nonlinear constitutive model of CSG, and finally verified the new constitutive model with experimental data. Results showed that the model could well simulate the deformation characteristics of the CSG with cement content of more than 40 kg/m3, and the entire stress–strain relationship was basically consistent with the experimental value, reflecting the adaptability and superiority of the nonlinear constitutive model of CSG.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2021.1998995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Cemented sand and gravel (CSG) is a kind of green building material that has emerged in recent years. The cement content has a great impact on the deformation characteristics of CSG, but the current constitutive models cannot reflect this problem. Based on the previous research results, this paper depicted the volume strain and shear strain of CSG, established a nonlinear constitutive model of CSG, and finally verified the new constitutive model with experimental data. Results showed that the model could well simulate the deformation characteristics of the CSG with cement content of more than 40 kg/m3, and the entire stress–strain relationship was basically consistent with the experimental value, reflecting the adaptability and superiority of the nonlinear constitutive model of CSG.
一种新的钢管混凝土非线性本构模型
摘要:胶结砂砾(CSG)是近年来兴起的一种绿色建材。水泥掺量对水泥混凝土的变形特性影响较大,但现有的本构模型无法反映这一问题。本文在前人研究成果的基础上,描述了混凝土的体积应变和剪切应变,建立了混凝土的非线性本构模型,最后用实验数据验证了新的本构模型。结果表明,该模型能较好地模拟水泥掺量大于40 kg/m3时CSG的变形特征,且整个应力-应变关系与试验值基本一致,体现了CSG非线性本构模型的适应性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
31
期刊介绍: The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信