Learning Deep Representation with Large-Scale Attributes

Wanli Ouyang, Hongyang Li, Xingyu Zeng, Xiaogang Wang
{"title":"Learning Deep Representation with Large-Scale Attributes","authors":"Wanli Ouyang, Hongyang Li, Xingyu Zeng, Xiaogang Wang","doi":"10.1109/ICCV.2015.220","DOIUrl":null,"url":null,"abstract":"Learning strong feature representations from large scale supervision has achieved remarkable success in computer vision as the emergence of deep learning techniques. It is driven by big visual data with rich annotations. This paper contributes a large-scale object attribute database that contains rich attribute annotations (over 300 attributes) for ~180k samples and 494 object classes. Based on the ImageNet object detection dataset, it annotates the rotation, viewpoint, object part location, part occlusion, part existence, common attributes, and class-specific attributes. Then we use this dataset to train deep representations and extensively evaluate how these attributes are useful on the general object detection task. In order to make better use of the attribute annotations, a deep learning scheme is proposed by modeling the relationship of attributes and hierarchically clustering them into semantically meaningful mixture types. Experimental results show that the attributes are helpful in learning better features and improving the object detection accuracy by 2.6% in mAP on the ILSVRC 2014 object detection dataset and 2.4% in mAP on PASCAL VOC 2007 object detection dataset. Such improvement is well generalized across datasets.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"42 1","pages":"1895-1903"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Learning strong feature representations from large scale supervision has achieved remarkable success in computer vision as the emergence of deep learning techniques. It is driven by big visual data with rich annotations. This paper contributes a large-scale object attribute database that contains rich attribute annotations (over 300 attributes) for ~180k samples and 494 object classes. Based on the ImageNet object detection dataset, it annotates the rotation, viewpoint, object part location, part occlusion, part existence, common attributes, and class-specific attributes. Then we use this dataset to train deep representations and extensively evaluate how these attributes are useful on the general object detection task. In order to make better use of the attribute annotations, a deep learning scheme is proposed by modeling the relationship of attributes and hierarchically clustering them into semantically meaningful mixture types. Experimental results show that the attributes are helpful in learning better features and improving the object detection accuracy by 2.6% in mAP on the ILSVRC 2014 object detection dataset and 2.4% in mAP on PASCAL VOC 2007 object detection dataset. Such improvement is well generalized across datasets.
学习大规模属性的深度表示
随着深度学习技术的出现,从大规模监督中学习强特征表示在计算机视觉领域取得了显著的成功。它由具有丰富注释的大可视化数据驱动。本文构建了一个大型对象属性数据库,该数据库包含约180k个样本和494个对象类的丰富属性注释(超过300个属性)。基于ImageNet对象检测数据集,对旋转、视点、对象部分位置、部分遮挡、部分存在、公共属性和类特定属性进行标注。然后,我们使用该数据集来训练深度表征,并广泛评估这些属性在一般目标检测任务中的用处。为了更好地利用属性标注,提出了一种深度学习方案,对属性之间的关系进行建模,并将其分层聚类为语义上有意义的混合类型。实验结果表明,这些属性有助于学习更好的特征,在ILSVRC 2014目标检测数据集上,mAP的目标检测准确率提高2.6%,在PASCAL VOC 2007目标检测数据集上,mAP的目标检测准确率提高2.4%。这种改进可以很好地推广到各个数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信